(5/6)x+7=17

Simple and best practice solution for (5/6)x+7=17 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5/6)x+7=17 equation:



(5/6)x+7=17
We move all terms to the left:
(5/6)x+7-(17)=0
Domain of the equation: 6)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+5/6)x+7-17=0
We add all the numbers together, and all the variables
(+5/6)x-10=0
We multiply parentheses
5x^2-10=0
a = 5; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·5·(-10)
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{2}}{2*5}=\frac{0-10\sqrt{2}}{10} =-\frac{10\sqrt{2}}{10} =-\sqrt{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{2}}{2*5}=\frac{0+10\sqrt{2}}{10} =\frac{10\sqrt{2}}{10} =\sqrt{2} $

See similar equations:

| 4x+5x+12=15 | | 3x −7+9−2x = x +2 | | 9-2r=r-6 | | 2.4n+4.8=2n-0.4+2.5 | | -3/10z=-2/3 | | 49-4w=3w | | -25=-16t^2+60t | | -7p-7=-9p+9 | | 1/9(2m-16)=1/3(2m | | (60-x)+4x+2=140 | | 2+8n=8n+4 | | -7p=-9+9 | | 2/3(3x+9)=-2(2x÷6) | | k/6=k/5+1 | | v=21-6v | | 138/4x+x=60 | | k/2-k=2 | | X^3+76x+240=0 | | 6.6g+2=3.6g+11 | | 17-5m=50=m6 | | |d|+3=33 | | x/3+2=1/3 | | -0.67(12c-9)+14c=0 | | 5-8a+8-7=2a-8a | | 3.9g+9=1.9g+13 | | 4x-9=-33+2x | | 2x+2+2x=3+4x-1 | | 2(3-6a)=36 | | 7+9c=4c–3 | | 4n-5=1/5 | | -2+4+4=-4x-2+5x | | -7x+3=5x-141 |

Equations solver categories