(5/6)x-(1/5)x=19

Simple and best practice solution for (5/6)x-(1/5)x=19 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5/6)x-(1/5)x=19 equation:



(5/6)x-(1/5)x=19
We move all terms to the left:
(5/6)x-(1/5)x-(19)=0
Domain of the equation: 6)x!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 5)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+5/6)x-(+1/5)x-19=0
We multiply parentheses
5x^2-x^2-19=0
We add all the numbers together, and all the variables
4x^2-19=0
a = 4; b = 0; c = -19;
Δ = b2-4ac
Δ = 02-4·4·(-19)
Δ = 304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{304}=\sqrt{16*19}=\sqrt{16}*\sqrt{19}=4\sqrt{19}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{19}}{2*4}=\frac{0-4\sqrt{19}}{8} =-\frac{4\sqrt{19}}{8} =-\frac{\sqrt{19}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{19}}{2*4}=\frac{0+4\sqrt{19}}{8} =\frac{4\sqrt{19}}{8} =\frac{\sqrt{19}}{2} $

See similar equations:

| |3a+7|=1 | | 3(x-7)-4=11 | | -7+7p=6p | | 1-13=z÷-4 | | 9x=4x+32 | | 3(4+x)=5(10x) | | k=1/4÷4 | | -6-3x=-33 | | 8w-12w=36 | | 6y=-3(2)+12 | | 3(b+3)-2b=11b-11 | | 4y-8/7=10 | | 3/100=x/60 | | 6x2+-5x=0 | | 7x-9•2=5x+-6 | | 8(4x+5)–20=84 | | 10+k/8=-4 | | 22g-1=2g+8 | | x+x=x+51 | | 8v=18+5v | | 8w+8=6w-10 | | 3/x-3+5/2x-6=11/2 | | 0=-12x^2+960x-14,400 | | 3(4-2x)=-6(x-5) | | 9*x+16=81 | | t^2-3t+9=0 | | 9*x*16=81 | | 10+6x-3=2x+7+4 | | -3+(8-2x)^5/4=29 | | 1/4x+7=26x | | p-94=12 | | 14/20=12/x |

Equations solver categories