(5/6)x-2/3=1

Simple and best practice solution for (5/6)x-2/3=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5/6)x-2/3=1 equation:



(5/6)x-2/3=1
We move all terms to the left:
(5/6)x-2/3-(1)=0
Domain of the equation: 6)x!=0
x!=0/1
x!=0
x∈R
determiningTheFunctionDomain (5/6)x-1-2/3=0
We add all the numbers together, and all the variables
(+5/6)x-1-2/3=0
We multiply parentheses
5x^2-1-2/3=0
We multiply all the terms by the denominator
5x^2*3-2-1*3=0
We add all the numbers together, and all the variables
5x^2*3-5=0
Wy multiply elements
15x^2-5=0
a = 15; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·15·(-5)
Δ = 300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{300}=\sqrt{100*3}=\sqrt{100}*\sqrt{3}=10\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{3}}{2*15}=\frac{0-10\sqrt{3}}{30} =-\frac{10\sqrt{3}}{30} =-\frac{\sqrt{3}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{3}}{2*15}=\frac{0+10\sqrt{3}}{30} =\frac{10\sqrt{3}}{30} =\frac{\sqrt{3}}{3} $

See similar equations:

| 13x+12=-16 | | 1+34=-5(4x-7) | | 5x^2+88x+51=0 | | 7x-4(3x-2)-10=12 | | 6(6+x)=12 | | 16t^2+54t+16=0 | | -15+7=-4(x+9) | | 5=5+15t-4.9t^2 | | 6(6x)=12 | | 5(2x+6)=-42+32 | | 3(n+2)=5 | | −108π=6πj−108π=6πj | | 7x-21=119 | | 5.2=a−0.45.2=a−0.4 | | 21-7x=119 | | x2+5x-14=0 | | t^2-9t+39=0 | | x+2x+x+5=100 | | 0.5x+x-100=x+5 | | 64=x+x+x+2.5x+2.5x | | 2*r(4)=r(8) | | w-8=3w | | -13+13x+12x^2=0 | | 12-4*5=5x-4-3x+10 | | 4(2x-5(x-3)=6 | | -10^2-39x-35=0 | | 4z-8=3z+9 | | 4-4=5x-3x | | 1x+-5=5+-3x | | 7x+6-4=15 | | n²-65n+1000=0 | | 0.5x^2-6x+20=0 |

Equations solver categories