(5/7)p-(4/7)p-9=2+3

Simple and best practice solution for (5/7)p-(4/7)p-9=2+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5/7)p-(4/7)p-9=2+3 equation:



(5/7)p-(4/7)p-9=2+3
We move all terms to the left:
(5/7)p-(4/7)p-9-(2+3)=0
Domain of the equation: 7)p!=0
p!=0/1
p!=0
p∈R
We add all the numbers together, and all the variables
(+5/7)p-(+4/7)p-9-5=0
We add all the numbers together, and all the variables
(+5/7)p-(+4/7)p-14=0
We multiply parentheses
5p^2-4p^2-14=0
We add all the numbers together, and all the variables
p^2-14=0
a = 1; b = 0; c = -14;
Δ = b2-4ac
Δ = 02-4·1·(-14)
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{14}}{2*1}=\frac{0-2\sqrt{14}}{2} =-\frac{2\sqrt{14}}{2} =-\sqrt{14} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{14}}{2*1}=\frac{0+2\sqrt{14}}{2} =\frac{2\sqrt{14}}{2} =\sqrt{14} $

See similar equations:

| 3x+50=2x+7x+40 | | 2x-10-7=2 | | 7m-7=35 | | 10-4x=8-5x | | 14.32+0.09h=15,07+0.14h | | u^2-48=96 | | x^2+10x=8x+24 | | 6q–9=12+3q | | 10^5x=555 | | (x−2)2−16=0 | | 4(0.2x-5)=12. | | 8c-5c+c+c=20 | | 1/3(x+36)=17 | | 6x+5x=43 | | 4(x-8)2=576 | | 5k+3k-2k+2k-3k=5 | | 30x=330+50x | | -3(n+7)=-13+5n | | -4c+-4=12 | | -x-11-2x-15=-66-4x | | p/15+8=7 | | 4x+3-x+6-2=21 | | x+135+x+65=180 | | 3x+4=7x+15 | | 0=16t^2+8t+20 | | 1/2x+5=8+2/3x | | 6(d+5)=42 | | n/15-9=-8 | | 8+5a-6a=210 | | 82+x-2x+4=34-3x | | -2x-9=6+x | | 13x-1=13x−1=9x-139x−13 |

Equations solver categories