If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(5/7)x+(1/7)=3
We move all terms to the left:
(5/7)x+(1/7)-(3)=0
Domain of the equation: 7)x!=0determiningTheFunctionDomain (5/7)x-3+(1/7)=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+5/7)x-3+(+1/7)=0
We multiply parentheses
5x^2-3+(+1/7)=0
We get rid of parentheses
5x^2-3+1/7=0
We multiply all the terms by the denominator
5x^2*7+1-3*7=0
We add all the numbers together, and all the variables
5x^2*7-20=0
Wy multiply elements
35x^2-20=0
a = 35; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·35·(-20)
Δ = 2800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2800}=\sqrt{400*7}=\sqrt{400}*\sqrt{7}=20\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{7}}{2*35}=\frac{0-20\sqrt{7}}{70} =-\frac{20\sqrt{7}}{70} =-\frac{2\sqrt{7}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{7}}{2*35}=\frac{0+20\sqrt{7}}{70} =\frac{20\sqrt{7}}{70} =\frac{2\sqrt{7}}{7} $
| 5x=2x+183 | | 8m-11=9m+15 | | Y=4x-7/2X+3 | | 10+4-3+x=8 | | 53x−10=13x | | 4y+5=4y=8 | | (4y+5)=(4y=8) | | 7(x+2)=7x−2 | | 3+x=3.2+.96 | | -8t^2-2t=0 | | -2(8y-10)-y=-3(y-2) | | 11x-111=57+5x | | -36-9x=84-4x | | 14x/17=x/68 | | 122/s=3,s≠0 | | 2x-28=4x+14 | | -82-8x=128-15x | | -2n^2+n=0 | | 18x+30=40x+30 | | -8x-75=2x+115 | | -238-11x=5x+98 | | -5x-23+3x=-23 | | 8x-108=66+14x | | -3.3-5x=6.2 | | -8x-68=94+x | | (h-3/2)^2=1/2 | | 9(h+3)=-6(2h-9) | | 10x+25x+75+290-(10x=15)=6,50 | | 10x+25x+75+290*(10x=15)=6,50 | | -57+2x=57-4x | | 8x-125=-6x+169 | | 6m-22=(m-6) |