(50-2y/20)(400+y)=20240

Simple and best practice solution for (50-2y/20)(400+y)=20240 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (50-2y/20)(400+y)=20240 equation:



(50-2y/20)(400+y)=20240
We move all terms to the left:
(50-2y/20)(400+y)-(20240)=0
Domain of the equation: 20)(400+y)!=0
y∈R
We add all the numbers together, and all the variables
(-2y/20+50)(y+400)-20240=0
We multiply parentheses ..
(-2y^2-800y+50y+20000)-20240=0
We get rid of parentheses
-2y^2-800y+50y+20000-20240=0
We add all the numbers together, and all the variables
-2y^2-750y-240=0
a = -2; b = -750; c = -240;
Δ = b2-4ac
Δ = -7502-4·(-2)·(-240)
Δ = 560580
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{560580}=\sqrt{4*140145}=\sqrt{4}*\sqrt{140145}=2\sqrt{140145}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-750)-2\sqrt{140145}}{2*-2}=\frac{750-2\sqrt{140145}}{-4} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-750)+2\sqrt{140145}}{2*-2}=\frac{750+2\sqrt{140145}}{-4} $

See similar equations:

| 10=360/n | | 4x-7+7x-5=180 | | 7x+11+2x+2+4x-2=180 | | 2r+7=5r=67 | | 9.5x=-152 | | 40=360/n | | 10−5.9=m | | t3=24 | | s+1.8=3.2 | | i=350(0.03)(10) | | 5x-2=x=6 | | 3x10=2x10= | | 51.4=360/n | | 51.4=360n | | 0=x+38 | | 2x-4+7=x+3 | | 9−5.8=u | | 4.9t^2-10t+400=0 | | 3=5+6z | | 8+0.3=h | | 7.5=360/n | | 35.7=b+16.92 | | 6=360/n | | 16^-x/2=256 | | 13m=75m=5 | | 7x+x+3=1/4(8x+24)-9 | | 2p+p-4=14 | | 10(n+6)+5n-12=138 | | 2p+-14=0 | | 0.75y=15 | | 4x+(4*2)=12 | | 6x+1+6-14+9x+4=180 |

Equations solver categories