If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(50t)2+(60t)2=3002
We move all terms to the left:
(50t)2+(60t)2-(3002)=0
We add all the numbers together, and all the variables
110t^2-3002=0
a = 110; b = 0; c = -3002;
Δ = b2-4ac
Δ = 02-4·110·(-3002)
Δ = 1320880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1320880}=\sqrt{16*82555}=\sqrt{16}*\sqrt{82555}=4\sqrt{82555}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{82555}}{2*110}=\frac{0-4\sqrt{82555}}{220} =-\frac{4\sqrt{82555}}{220} =-\frac{\sqrt{82555}}{55} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{82555}}{2*110}=\frac{0+4\sqrt{82555}}{220} =\frac{4\sqrt{82555}}{220} =\frac{\sqrt{82555}}{55} $
| 4x+40-2x+10=0 | | 42t+1+t=3t+2 | | -5(1+x)=-6x | | (3j+5)(3j-5)=0 | | x(6x+-1)=35 | | 98=(4+4x)/(7x+1.09) | | 7m+1=64 | | 10y+4=34 | | 0=4y^2-14y+12 | | 65=x^2+4x | | Y=1/4x-3= | | 12^15x/7=15^12x/7 | | 14.8x=60 | | 12^15x=15^12x | | 6x-13=4x+3 | | 10^3x-2=4239 | | (4x+3)^2=16 | | 10x-14=3420 | | 2b-3.4/0.6=-39 | | 2+5x=5(4x) | | 11x+80=180 | | 3x^2+8=91 | | X=-4/7y | | 9(4a-2)=12(3a+8 | | 84-3y=27 | | (18-x)^2+(15-x)^2=154 | | m+7/3=8 | | (18-x)^2(15-x)^2=154 | | X+x+x+3=80 | | 7x+10-2x=5(x+2) | | 2n+3=-12+3 | | H=-16t^2+48+64 |