(54-2x)(35-2x)=429

Simple and best practice solution for (54-2x)(35-2x)=429 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (54-2x)(35-2x)=429 equation:



(54-2x)(35-2x)=429
We move all terms to the left:
(54-2x)(35-2x)-(429)=0
We add all the numbers together, and all the variables
(-2x+54)(-2x+35)-429=0
We multiply parentheses ..
(+4x^2-70x-108x+1890)-429=0
We get rid of parentheses
4x^2-70x-108x+1890-429=0
We add all the numbers together, and all the variables
4x^2-178x+1461=0
a = 4; b = -178; c = +1461;
Δ = b2-4ac
Δ = -1782-4·4·1461
Δ = 8308
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8308}=\sqrt{4*2077}=\sqrt{4}*\sqrt{2077}=2\sqrt{2077}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-178)-2\sqrt{2077}}{2*4}=\frac{178-2\sqrt{2077}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-178)+2\sqrt{2077}}{2*4}=\frac{178+2\sqrt{2077}}{8} $

See similar equations:

| -9t-3t=72 | | 3c-10c=28 | | 40=16+4z | | 8q+4q=60 | | 18=2-8c | | 3=9+12+q/5 | | 42=6(d-1) | | -6r+7r=-7 | | (2k+1)+(2k+1)=2(2k+1) | | 10x+3+2x-8=31.12x=31-3+812x=36x=36/12x3 | | x-4/x-5+x-6/x-7=10/3 | | x-3=7x+21 | | -6z=498 | | 4-2=h+7 | | 4-3=h+7 | | 1/2^x=4^(x-3) | | x^2+4x-10605=0 | | 5x+-26=-33 | | -48=6n+7n+9 | | 3z+-2z=10 | | -18a=126 | | b-14=-126 | | 6g-1=9+10g | | 7x-16+62+43=180 | | 7x-16+62+42=180 | | 8x+6+60+90=180 | | p+71=9p | | 5p-58=p+26 | | (3x)+48+90=180 | | 4x-12+3x+15+79=180 | | 34.76-d=14.88 | | (6x-11)+x+5)+81=180 |

Equations solver categories