(56/7w)+(4/w)=1

Simple and best practice solution for (56/7w)+(4/w)=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (56/7w)+(4/w)=1 equation:



(56/7w)+(4/w)=1
We move all terms to the left:
(56/7w)+(4/w)-(1)=0
Domain of the equation: 7w)!=0
w!=0/1
w!=0
w∈R
Domain of the equation: w)!=0
w!=0/1
w!=0
w∈R
We add all the numbers together, and all the variables
(+56/7w)+(+4/w)-1=0
We get rid of parentheses
56/7w+4/w-1=0
We calculate fractions
56w/7w^2+28w/7w^2-1=0
We multiply all the terms by the denominator
56w+28w-1*7w^2=0
We add all the numbers together, and all the variables
84w-1*7w^2=0
Wy multiply elements
-7w^2+84w=0
a = -7; b = 84; c = 0;
Δ = b2-4ac
Δ = 842-4·(-7)·0
Δ = 7056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{7056}=84$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(84)-84}{2*-7}=\frac{-168}{-14} =+12 $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(84)+84}{2*-7}=\frac{0}{-14} =0 $

See similar equations:

| x/6+4=-4 | | 7x+5x=-12 | | 8x+20-8=180 | | 28x+10x= | | (w+5)-5=2(w+5) | | -v/7=-60 | | 52+g=45+;11g=4 | | 2x-7=-35 | | 52+g=45+;11g=5 | | 52+g=45+;11g=3 | | 7x+5=5(x+3)=2x | | 5(x+)-6=-(3x+12) | | 5x-7x+8=14 | | 2x5^x+3x5^x=25^12 | | 17-2p=2p+2p | | v/2-8=7 | | (6x+9)+(4x-19)=180 | | 84=m/4 | | 32=y/4+12 | | 33=y/10 | | 61=-6d+7 | | 5x-23=7x-1 | | 112-32r=4(5-3r) | | (7x-1)=(5x-23) | | 8x+4(-x+3)=3÷2(6-2x) | | P=A+b-15 | | 6y-5÷2y=7/9 | | (2x+23)=(9x-5) | | -12=6m+4m-8 | | -15=3(1-2x) | | 4x-5x+13=11 | | 2x+5x-6=36 |

Equations solver categories