(5n-17)(2n+1)=n

Simple and best practice solution for (5n-17)(2n+1)=n equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5n-17)(2n+1)=n equation:



(5n-17)(2n+1)=n
We move all terms to the left:
(5n-17)(2n+1)-(n)=0
We add all the numbers together, and all the variables
-1n+(5n-17)(2n+1)=0
We multiply parentheses ..
(+10n^2+5n-34n-17)-1n=0
We get rid of parentheses
10n^2+5n-34n-1n-17=0
We add all the numbers together, and all the variables
10n^2-30n-17=0
a = 10; b = -30; c = -17;
Δ = b2-4ac
Δ = -302-4·10·(-17)
Δ = 1580
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1580}=\sqrt{4*395}=\sqrt{4}*\sqrt{395}=2\sqrt{395}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-2\sqrt{395}}{2*10}=\frac{30-2\sqrt{395}}{20} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+2\sqrt{395}}{2*10}=\frac{30+2\sqrt{395}}{20} $

See similar equations:

| 3h+2= | | -2(6+x)=18-x | | -2x+152=116 | | 8x+24=12x-6 | | -n+(-24)=5+(-n) | | 1.3(x+5)-(5.7+0.3x)=-7+5 | | 2p-7=-7 | | j+3/10-3j/20=7 | | |2x-9|-4=-3 | | 5+9n=8n | | 2x^2+x=7.7 | | 2x²+x=7.7 | | x+x+6+3(x+6)=149 | | 4x-6x-15=31 | | R-7-3r=-17 | | 4x+6x-15=31 | | 5(3x+9)-2x=15x-2(x+5) | | 20=4/5*w | | .25(-16+4m)+2m=3m-4 | | 2-5r-5=7 | | 9k−8k=16 | | x+(x+2)=246 | | 2(m−14)=12 | | k÷0.5=29 | | (-y+13)÷49=40 | | 7x+40∘=3x+112∘ | | 2x+2=246 | | 6x=7+-5 | | -8b(5b-10)+5=-115 | | m+1/2=3/4 | | 5(4+3)=4(7x-5)+3(9-2x) | | 4(5n+2)-5=39+8n |

Equations solver categories