(5p+1)(p+1)=2(7p+5)

Simple and best practice solution for (5p+1)(p+1)=2(7p+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5p+1)(p+1)=2(7p+5) equation:



(5p+1)(p+1)=2(7p+5)
We move all terms to the left:
(5p+1)(p+1)-(2(7p+5))=0
We multiply parentheses ..
(+5p^2+5p+p+1)-(2(7p+5))=0
We calculate terms in parentheses: -(2(7p+5)), so:
2(7p+5)
We multiply parentheses
14p+10
Back to the equation:
-(14p+10)
We get rid of parentheses
5p^2+5p+p-14p+1-10=0
We add all the numbers together, and all the variables
5p^2-8p-9=0
a = 5; b = -8; c = -9;
Δ = b2-4ac
Δ = -82-4·5·(-9)
Δ = 244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{244}=\sqrt{4*61}=\sqrt{4}*\sqrt{61}=2\sqrt{61}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{61}}{2*5}=\frac{8-2\sqrt{61}}{10} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{61}}{2*5}=\frac{8+2\sqrt{61}}{10} $

See similar equations:

| y-2.24=8.5 | | 1w+-3=6 | | -3z+4=-7z-16 | | 9x-14+4x-1=18.8 | | g/2−–10=11 | | b+b+1=b+48 | | 2x+25=x-10 | | 113+9g=9g+36 | | 6x+3=6x+3=9x-12 | | g2− –10=11 | | b/3+ 3=5 | | w+w=w+30 | | b3+ 3=5 | | P(t)=8t+100 | | 6n-18=3n+27 | | 7k+5(k+11)+12=5 | | w-30+w-10=w+45 | | 4x+16,4=-3.6 | | 0=-16t^2-88t+100 | | -6x=-5(x+1)-x | | 2x+7=175 | | 9x+10+7x-6=180 | | y-30+y-13=y+28 | | -1x-9=-3x | | 3g-(4g-6)=34 | | 5t+10-6t+1=-2 | | (x+5)/4=-10 | | 4x-19=8x+5 | | 18=9-a | | -2(9y-5)=-25-4y | | 5-2i+3+7i=0 | | (1.07^x)=1000 |

Equations solver categories