(5x)(x-3)+6=x(x-3)+11

Simple and best practice solution for (5x)(x-3)+6=x(x-3)+11 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5x)(x-3)+6=x(x-3)+11 equation:



(5x)(x-3)+6=x(x-3)+11
We move all terms to the left:
(5x)(x-3)+6-(x(x-3)+11)=0
We multiply parentheses
5x^2-15x-(x(x-3)+11)+6=0
We calculate terms in parentheses: -(x(x-3)+11), so:
x(x-3)+11
We multiply parentheses
x^2-3x+11
Back to the equation:
-(x^2-3x+11)
We get rid of parentheses
5x^2-x^2-15x+3x-11+6=0
We add all the numbers together, and all the variables
4x^2-12x-5=0
a = 4; b = -12; c = -5;
Δ = b2-4ac
Δ = -122-4·4·(-5)
Δ = 224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{224}=\sqrt{16*14}=\sqrt{16}*\sqrt{14}=4\sqrt{14}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{14}}{2*4}=\frac{12-4\sqrt{14}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{14}}{2*4}=\frac{12+4\sqrt{14}}{8} $

See similar equations:

| -0.5x-6-3=9 | | 1/x=-12 | | (5x)(x-3)+6=x(x-3+11 | | 2a=22+a | | -4=-u-6 | | 4x+17=0 | | 2t=1+t | | 50x+84=50x+45 | | b/16=b/4-6/4 | | 4z+7-2z=7+z-6 | | 9z=z+88 | | 15w+16w-6+1=-5w+1-6 | | 4.25m+5=36.75 | | x^2+12^2=25^2 | | 2(2m)+4m+2)=108 | | s=125+25 | | 1-2(6-n)=3n+2 | | -4(y-5)=9y+33 | | 3/4x+9=7 | | 9=8-u | | 7^{2x-3)=1 | | 2(2m)(4m+2)=108 | | y=17/4+2 | | 5x-8=22 | | x+8/4=-6 | | 6x+7=8x−156 | | 3/4x=-14x | | F(-2)=3x^2-5x+6 | | y/2+y/3=y+1/6 | | -6(w-4)+8(w)=2(w+9) | | -2(1x+8)=10 | | .42=(54*x)/x |

Equations solver categories