If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(5x)+(1/2)(4x+8)=(25)
We move all terms to the left:
(5x)+(1/2)(4x+8)-((25))=0
Domain of the equation: 2)(4x+8)!=0determiningTheFunctionDomain 5x+(1/2)(4x+8)-25=0
x∈R
We add all the numbers together, and all the variables
5x+(+1/2)(4x+8)-25=0
We multiply parentheses ..
(+4x^2+1/2*8)+5x-25=0
We multiply all the terms by the denominator
(+4x^2+1+5x*2*8)-25*2*8)=0
We add all the numbers together, and all the variables
(+4x^2+1+5x*2*8)=0
We get rid of parentheses
4x^2+5x*2*8+1=0
Wy multiply elements
4x^2+80x*8+1=0
Wy multiply elements
4x^2+640x+1=0
a = 4; b = 640; c = +1;
Δ = b2-4ac
Δ = 6402-4·4·1
Δ = 409584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{409584}=\sqrt{16*25599}=\sqrt{16}*\sqrt{25599}=4\sqrt{25599}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(640)-4\sqrt{25599}}{2*4}=\frac{-640-4\sqrt{25599}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(640)+4\sqrt{25599}}{2*4}=\frac{-640+4\sqrt{25599}}{8} $
| 30x+18=35-4 | | 3a-7=-13 | | 2f=9 | | 4x+21=13x-(4x+21) | | .2(4x+7)+.5(4x+2)=8 | | -2/7x-1=1 | | -18+16=2x | | -6v+2v=4 | | 4(x-7)-2(x+1)=-20 | | -1/6d=14 | | -14z=-20z+16-4 | | (60*p+5000)=12000+300 | | 2(4b+8)-8(1+2b)=24 | | 6=−w—8 | | 72=10u-u | | (x+2)(x-4)-2(x-4)=x(x-4) | | 60p+5000=12300 | | 6=13n−4n | | 4-(x+3)=2(x+7) | | 6=13n−4n. | | 4x+5/3+2x=7+2/9x+2 | | 60p+5000=12000+300 | | 2/3+1/6r=5/6r+1/3 | | 4x3+3x-8=0 | | (y)/(-2)+(3)=(4) | | 16=22+5x | | 278-30+1/45=x | | 4x+3=9+5x | | 7(x-5)=6(x+5) | | -1.6-6x=21.8 | | 3(4x–6)=-3(5–2x) | | 3+-1/3k=4 |