(5x)+(1/2x+24)=90

Simple and best practice solution for (5x)+(1/2x+24)=90 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5x)+(1/2x+24)=90 equation:



(5x)+(1/2x+24)=90
We move all terms to the left:
(5x)+(1/2x+24)-(90)=0
Domain of the equation: 2x+24)!=0
x∈R
We get rid of parentheses
5x+1/2x+24-90=0
We multiply all the terms by the denominator
5x*2x+24*2x-90*2x+1=0
Wy multiply elements
10x^2+48x-180x+1=0
We add all the numbers together, and all the variables
10x^2-132x+1=0
a = 10; b = -132; c = +1;
Δ = b2-4ac
Δ = -1322-4·10·1
Δ = 17384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{17384}=\sqrt{4*4346}=\sqrt{4}*\sqrt{4346}=2\sqrt{4346}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-132)-2\sqrt{4346}}{2*10}=\frac{132-2\sqrt{4346}}{20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-132)+2\sqrt{4346}}{2*10}=\frac{132+2\sqrt{4346}}{20} $

See similar equations:

| -2.34+3x=5x | | 32=2(x+7)-4x | | 2x+5x+6=7x-4 | | 2(x+2)^-5=8 | | 136x-476=6x-9 | | 3(1-8n)=123 | | (3.50+225s)=150 | | 10(1-6n)=-10(11+7n) | | 200m-75m+57600=60300-175m | | 21-n=15 | | 12-4x=2x-18 | | 7+2f=9+2f | | .6n+8=-10 | | 3(x-3)+5=4(x+4)+1 | | 3x=1/4x^+5 | | 12(x+1/6)=8 | | 3.2+0.3x=0.2x1.4 | | 38=3x-14+8x | | (6/10)x=3 | | F(x)=-1x+4 | | 2/8(6x+9)+7x=1x+7 | | 9=6a | | 6y−y−y=0 | | 1/4(12x+8)=20 | | 1/5x^+6=2x | | 12x^2-90x+150=0 | | 5y+9=104 | | 4(2x-9)=8x+36 | | 5f=1/8=-3 | | r+13=43 | | 11x-90=17x+96 | | 6n+20-4n=42+2n |

Equations solver categories