(5x)/(x-3)=(8-4)(2x)

Simple and best practice solution for (5x)/(x-3)=(8-4)(2x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5x)/(x-3)=(8-4)(2x) equation:



(5x)/(x-3)=(8-4)(2x)
We move all terms to the left:
(5x)/(x-3)-((8-4)(2x))=0
Domain of the equation: (x-3)!=0
We move all terms containing x to the left, all other terms to the right
x!=3
x∈R
We add all the numbers together, and all the variables
5x/(x-3)-(42x)=0
We add all the numbers together, and all the variables
-42x+5x/(x-3)=0
We multiply all the terms by the denominator
-42x*(x-3)+5x=0
We add all the numbers together, and all the variables
5x-42x*(x-3)=0
We multiply parentheses
-42x^2+5x+126x=0
We add all the numbers together, and all the variables
-42x^2+131x=0
a = -42; b = 131; c = 0;
Δ = b2-4ac
Δ = 1312-4·(-42)·0
Δ = 17161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{17161}=131$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(131)-131}{2*-42}=\frac{-262}{-84} =3+5/42 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(131)+131}{2*-42}=\frac{0}{-84} =0 $

See similar equations:

| 10–0.2x=9.1 | | 5x+13+3+33=70 | | 4w-11=53 | | 3/8+a=-5/8 | | .85c=55.25 | | 3(3+x)=105 | | 8(v+2)=4 | | 9m=3m+18 | | 4y-11=27 | | 4n+7n=-7 | | y=3(-1-1) | | x2+4x=-18-5x | | x+.20x=121 | | 2(m-6+3m)=2m+2-4m | | 5(x-1)+7(x+3)=146 | | 3x+5-10=9+7x | | 10x^2-8x-55=7 | | 3/5*y=-9 | | B-12=2+5v+2v | | 6x+24=10+8x | | 5=5(x6) | | 5=5(x+) | | z^2=-81 | | 4(x-11)=128 | | 4x+2x=2(3x+1) | | 6x-(3x+8)=16x=2 | | 2x+20Y=106 | | -3=3(x-10 | | -2/5r=-2/5 | | −8=x−7 | | 6/11y+48=0 | | x−8=x−7 |

Equations solver categories