(5x+1)(2x-1)+(5x+1)(5x+1)=0

Simple and best practice solution for (5x+1)(2x-1)+(5x+1)(5x+1)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5x+1)(2x-1)+(5x+1)(5x+1)=0 equation:



(5x+1)(2x-1)+(5x+1)(5x+1)=0
We multiply parentheses ..
(+10x^2-5x+2x-1)+(5x+1)(5x+1)=0
We get rid of parentheses
10x^2-5x+2x+(5x+1)(5x+1)-1=0
We multiply parentheses ..
10x^2+(+25x^2+5x+5x+1)-5x+2x-1=0
We add all the numbers together, and all the variables
10x^2+(+25x^2+5x+5x+1)-3x-1=0
We get rid of parentheses
10x^2+25x^2+5x+5x-3x+1-1=0
We add all the numbers together, and all the variables
35x^2+7x=0
a = 35; b = 7; c = 0;
Δ = b2-4ac
Δ = 72-4·35·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{49}=7$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-7}{2*35}=\frac{-14}{70} =-1/5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+7}{2*35}=\frac{0}{70} =0 $

See similar equations:

| 10x+14=15x-41 | | 7=-(6+2x)+3x | | -25-(-29)=x/11 | | p/4-3p/8 =4 | | 12x+8=4x/64 | | (x−5)(x−2)=(x+2)(x+7) | | 12x-5+6x+5=180 | | -4x+4-2x=-2(3x-1) | | -6x+7-4(x-1)=-(5x-6)-4x+4 | | 35=14-3x | | 11x+27=71 | | 9(x+5)=−9 | | 7x+3x=9x+1 | | 2^x=10000 | | 2x2+14x=5 | | (y-7)-(y+2)=3y | | 3=z-7/3 | | 3y-55+3y-5=180 | | 8x^2=-48+40x | | 12.5x+3/2x^2=500 | | 2(3x-1)-(7x+2)=3(4x-1) | | 7-x=27 | | 0.5n-3+n=3n-15 | | 3y-55=3y-5 | | 14-2b=8 | | R^2+6r=-8 | | x/21-1/7=14 | | 3(k+5)-7=7 | | 4n+6.2-2n=11.2-3n | | 4z+3-(z-2)=0 | | 3=4m=15-2m | | 2w+8=26 |

Equations solver categories