(5x+1)(x+2)=(x-1)(3x-2)

Simple and best practice solution for (5x+1)(x+2)=(x-1)(3x-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5x+1)(x+2)=(x-1)(3x-2) equation:



(5x+1)(x+2)=(x-1)(3x-2)
We move all terms to the left:
(5x+1)(x+2)-((x-1)(3x-2))=0
We multiply parentheses ..
(+5x^2+10x+x+2)-((x-1)(3x-2))=0
We calculate terms in parentheses: -((x-1)(3x-2)), so:
(x-1)(3x-2)
We multiply parentheses ..
(+3x^2-2x-3x+2)
We get rid of parentheses
3x^2-2x-3x+2
We add all the numbers together, and all the variables
3x^2-5x+2
Back to the equation:
-(3x^2-5x+2)
We get rid of parentheses
5x^2-3x^2+10x+x+5x+2-2=0
We add all the numbers together, and all the variables
2x^2+16x=0
a = 2; b = 16; c = 0;
Δ = b2-4ac
Δ = 162-4·2·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{256}=16$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16}{2*2}=\frac{-32}{4} =-8 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16}{2*2}=\frac{0}{4} =0 $

See similar equations:

| (8x-12)-(15x-10)=-80 | | 0,3x+1=0,7x-3 | | 4(s-84)+57=97 | | 19x-31=11x-1 | | 15t-15t+t=10 | | x⁴-7x²+6=0 | | 1/2-1/8q=9-1/4 | | -10k+13k+-10=20 | | 20+4x-2=-48 | | –3t=–5t−8 | | 2y-5=-6 | | x+2x+8=x | | 15s-4s-10s+2s-2s=7 | | 20=2πr | | 4/12x=7 | | 3x−2=13 | | 5x-4/2-7x+3/4=1 | | 2t-t+3t=4 | | 10u-6u-3u+4u+u=18 | | 15z-2z-11z-z=10 | | x/6+7=-5 | | 9/2x=12=21 | | 4s-2s=2 | | 8x+9=15x-3 | | -18m+20m+-18m+15m=13 | | 33+4x=65 | | 18x-12x=18 | | 48=x50 | | 12u-11u=14 | | 45x^2+9x-5=0 | | 12.03/h=3 | | 10x+12=x+1.7 |

Equations solver categories