(5x+10)/(8x-20)=x

Simple and best practice solution for (5x+10)/(8x-20)=x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5x+10)/(8x-20)=x equation:



(5x+10)/(8x-20)=x
We move all terms to the left:
(5x+10)/(8x-20)-(x)=0
Domain of the equation: (8x-20)!=0
We move all terms containing x to the left, all other terms to the right
8x!=20
x!=20/8
x!=2+1/2
x∈R
We add all the numbers together, and all the variables
-1x+(5x+10)/(8x-20)=0
We multiply all the terms by the denominator
-1x*(8x-20)+(5x+10)=0
We multiply parentheses
-8x^2+20x+(5x+10)=0
We get rid of parentheses
-8x^2+20x+5x+10=0
We add all the numbers together, and all the variables
-8x^2+25x+10=0
a = -8; b = 25; c = +10;
Δ = b2-4ac
Δ = 252-4·(-8)·10
Δ = 945
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{945}=\sqrt{9*105}=\sqrt{9}*\sqrt{105}=3\sqrt{105}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-3\sqrt{105}}{2*-8}=\frac{-25-3\sqrt{105}}{-16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+3\sqrt{105}}{2*-8}=\frac{-25+3\sqrt{105}}{-16} $

See similar equations:

| 2.5x+7=2x+13 | | 2y÷7=27 | | X+1y=56 | | 5x–40^2=0 | | 2.65xX=12 | | 0=14+(9.8)*t | | 7-q/6=q | | 7-9x-11=-8x+5 | | 3x-14=9-2x. | | X³+14x-43=0 | | y=0.75+3 | | 8-7x=2x+17 | | 0=4x2+6x-9 | | 5r2^2-10r=0 | | 3(3x-2x)=2x-11 | | w^2-12.5w+84=0 | | 1=-6(1-p) | | .5x+7=x+36 | | 5^x*2^((2x-1)/(x+1))=50 | | 44x+12-4x=8 | | 3x-7/5=2x | | (3x-7)/5=2x5 | | 90n-n=180 | | 3^x-2=11 | | 78=x^2-3 | | 3^2x+1÷9=27 | | Y+(y/2)=550 | | 4/28=x/25 | | 13+2(1-4)=8u-5(u+7) | | 7k-9=3k+11 | | 19/20=p−11/4 | | 2.4*b=6.72 |

Equations solver categories