If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(5x+2)=(5x+6)(4x-1)
We move all terms to the left:
(5x+2)-((5x+6)(4x-1))=0
We get rid of parentheses
5x-((5x+6)(4x-1))+2=0
We multiply parentheses ..
-((+20x^2-5x+24x-6))+5x+2=0
We calculate terms in parentheses: -((+20x^2-5x+24x-6)), so:We add all the numbers together, and all the variables
(+20x^2-5x+24x-6)
We get rid of parentheses
20x^2-5x+24x-6
We add all the numbers together, and all the variables
20x^2+19x-6
Back to the equation:
-(20x^2+19x-6)
5x-(20x^2+19x-6)+2=0
We get rid of parentheses
-20x^2+5x-19x+6+2=0
We add all the numbers together, and all the variables
-20x^2-14x+8=0
a = -20; b = -14; c = +8;
Δ = b2-4ac
Δ = -142-4·(-20)·8
Δ = 836
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{836}=\sqrt{4*209}=\sqrt{4}*\sqrt{209}=2\sqrt{209}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{209}}{2*-20}=\frac{14-2\sqrt{209}}{-40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{209}}{2*-20}=\frac{14+2\sqrt{209}}{-40} $
| -3x+20=-7(x-4) | | x-2/5=61/5 | | x+13-7=x | | 2(2x-1)-2x=x-5 | | x+8.2=12.7 | | x+x*0.5=140 | | -7(2x-6)=35 | | 3.3h−3=15−1.2h | | 8x=27+6x-15 | | x+x*x=18 | | 5(x-4)-2=-4(-4x+4)-2x | | 2.4=r/45 | | y-6≥=12 | | 2.4=r/46 | | 9x-27=6(x-5) | | -6d+15–14d=15 | | -3(w+8)=-5w-44 | | 10=-2(-6r+3r+1) | | 14=-8v+5(v+4) | | 3x-6x+5=x-5+10 | | 18.5-7n=2(6.5n+9) | | x/2+2x+7.5=115 | | -6=6(y-4)-8y | | X^2=14x+15 | | 2x-6+2(3x+3)=-2(x+1) | | 4(u+9)=-3(4u-6)+8u | | -x/2-9=-2 | | -4y+-8=2y+28 | | 5w+45=-5w+-15 | | 2x=+7/3 | | 4a+3a+1=24 | | n=n^2-6n-3 |