If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(5x+4)(4x+25)=139
We move all terms to the left:
(5x+4)(4x+25)-(139)=0
We multiply parentheses ..
(+20x^2+125x+16x+100)-139=0
We get rid of parentheses
20x^2+125x+16x+100-139=0
We add all the numbers together, and all the variables
20x^2+141x-39=0
a = 20; b = 141; c = -39;
Δ = b2-4ac
Δ = 1412-4·20·(-39)
Δ = 23001
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(141)-\sqrt{23001}}{2*20}=\frac{-141-\sqrt{23001}}{40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(141)+\sqrt{23001}}{2*20}=\frac{-141+\sqrt{23001}}{40} $
| 0.075-x=0.045 | | 1+2u=32 | | x+x*6=45 | | 3x-5+2x-19+x=180 | | 1+2u=3u | | 3k+8=88 | | 9+5=5u | | 3y+7=43-3y | | 52x+47=46 | | 3y+7=43-7 | | 6+3+2=4v | | x^2-85x-400=0 | | 4+4z=16 | | 153y=2 | | 0.707=x/24 | | Ax3=9 | | A=45+2a | | 15^3y=2 | | 2x+7=x+3+x | | 7x+755=5285 | | 13=28y+1 | | A=44a+2 | | 4÷6x+2=7÷3 | | 15x+20=2x | | 17x^2+19x=1848 | | 9x-15=8x+11 | | 10–2x=15 | | 4x+44=81 | | t−7=9 | | t−7=9t−7=9 | | g+15=22 | | r+12=17 |