(5x+4)(5x-4)=32

Simple and best practice solution for (5x+4)(5x-4)=32 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5x+4)(5x-4)=32 equation:



(5x+4)(5x-4)=32
We move all terms to the left:
(5x+4)(5x-4)-(32)=0
We use the square of the difference formula
25x^2-16-32=0
We add all the numbers together, and all the variables
25x^2-48=0
a = 25; b = 0; c = -48;
Δ = b2-4ac
Δ = 02-4·25·(-48)
Δ = 4800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4800}=\sqrt{1600*3}=\sqrt{1600}*\sqrt{3}=40\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{3}}{2*25}=\frac{0-40\sqrt{3}}{50} =-\frac{40\sqrt{3}}{50} =-\frac{4\sqrt{3}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{3}}{2*25}=\frac{0+40\sqrt{3}}{50} =\frac{40\sqrt{3}}{50} =\frac{4\sqrt{3}}{5} $

See similar equations:

| 8(a+2=5a+16+3a | | -6(2x+4)+1/2(8+2x)=20 | | 8(x+3)-2x=3x+9 | | 5/4y-10=-15 | | 7/3y-13=-6 | | 89+r=145 | | X2=y3 | | 40200-175m=38800+25m | | 5d+7d=-31 | | (-25)+(-25)+(-25)=-25x3 | | 15x-3=17+5x | | 15x+500=0 | | S(x)=8(1.5^x) | | x-15=2.2 | | x^=0.0001 | | 2(x+1)-(5x-3)=47 | | 2.1=2u-5.9 | | (3a-2)(4a-3)=8 | | 5a(a-4)=4 | | 5/x+8=23 | | m2-8m+10=0 | | 11d-9d-2=5d+8 | | 36+9x=40+8x | | -1/2x+5=12 | | 2x+1=5x+6-3x-2 | | X-5=2-4x | | 2x(x3)=15 | | 2-2x-3x2=0 | | 15-3x=20x+x | | x^2*9(2x-1)=0 | | 27^(2x+1)=3 | | 7x+14=49+2*(7x) |

Equations solver categories