(5x+7)2=17x2+84x+46

Simple and best practice solution for (5x+7)2=17x2+84x+46 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5x+7)2=17x2+84x+46 equation:



(5x+7)2=17x^2+84x+46
We move all terms to the left:
(5x+7)2-(17x^2+84x+46)=0
We multiply parentheses
10x-(17x^2+84x+46)+14=0
We get rid of parentheses
-17x^2+10x-84x-46+14=0
We add all the numbers together, and all the variables
-17x^2-74x-32=0
a = -17; b = -74; c = -32;
Δ = b2-4ac
Δ = -742-4·(-17)·(-32)
Δ = 3300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3300}=\sqrt{100*33}=\sqrt{100}*\sqrt{33}=10\sqrt{33}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-74)-10\sqrt{33}}{2*-17}=\frac{74-10\sqrt{33}}{-34} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-74)+10\sqrt{33}}{2*-17}=\frac{74+10\sqrt{33}}{-34} $

See similar equations:

| 2+7x2-9x=0 | | (9x+18)(8x-6)=0 | | -56x=8x2 | | 2x-2(x-2)+8-3(2x+4)=0 | | 2/3x+4/6=0 | | 7x+3-2x-27=5x-6-3x | | -u+250=116 | | 252-u=127 | | a=7.b=-4 | | 4/5e+(-1)=-11 | | 3y+25=142 | | 2p+34=90 | | 6x-5x=5(x+2)-6 | | 0.4x=84 | | -8+5(x+2)=4x | | 7x-8x+2=3x-4 | | 15=x/20.48+7 | | 0.3x+x=169 | | 3x+5-7x=10+2x | | n+3.7=4.2 | | n+3=42 | | -3(6x+6)=-144 | | -4(8+7n)=-88 | | 3x=-2.1 | | 0.04^(x)=1.024x10^(7) | | 6+23=3+n | | 8x+15=42 | | 30-4x=54 | | (21/3)/(0.6x)=2.5/(12/7) | | 5/4b=-3 | | 8=-4/3t | | 7e+18+5e=-2e+24 |

Equations solver categories