(5x-1=13x-57)X=

Simple and best practice solution for (5x-1=13x-57)X= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5x-1=13x-57)X= equation:



(5x-1=13x-57)x=
We move all terms to the left:
(5x-1-(13x-57)x)=0
We calculate terms in parentheses: +(5x-1-(13x-57)x), so:
5x-1-(13x-57)x
determiningTheFunctionDomain 5x-(13x-57)x-1
We multiply parentheses
-13x^2+5x+57x-1
We add all the numbers together, and all the variables
-13x^2+62x-1
Back to the equation:
+(-13x^2+62x-1)
We get rid of parentheses
-13x^2+62x-1=0
a = -13; b = 62; c = -1;
Δ = b2-4ac
Δ = 622-4·(-13)·(-1)
Δ = 3792
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3792}=\sqrt{16*237}=\sqrt{16}*\sqrt{237}=4\sqrt{237}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(62)-4\sqrt{237}}{2*-13}=\frac{-62-4\sqrt{237}}{-26} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(62)+4\sqrt{237}}{2*-13}=\frac{-62+4\sqrt{237}}{-26} $

See similar equations:

| 1/9=w/7 | | a.20+a=-50 | | (2x+6)6=720 | | 8(g-86)=96 | | 3)2(y+5)=3(y-2) | | (x-3)(x+2)/3+1/2=3(1-2x) | | 6x+174=180 | | 24+14x+9=4+30 | | 2x+13+4x-19=180 | | 11*(x-3)=-3*(x+11)-15 | | 8(g-86)=86 | | (x-3)(x+2)/3+1/2=3(1-2x | | 2y+74=180 | | 3=g+9/4 | | r-78/2=6 | | 2m–20=10+7m | | 16m+-2m=-14 | | -24=4(w+62) | | 4*(x+7)=-7(x+9)+124 | | 2x=(100+x) | | 32x-31x-6=21 | | Rx13=13 | | 3p=6p-15 | | -20=-4z | | 2×-3y=-×-2y | | 80=5(t+4) | | 12y+168=180 | | 18+10c=7c | | -4(4x-6)+4x=2(x+4) | | 8*(7x+10)=11*(2x+9)-155 | | 2x=100+x | | Y+8.3=12.7y |

Equations solver categories