(5x-2)(x-1)=x(2x+1)

Simple and best practice solution for (5x-2)(x-1)=x(2x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5x-2)(x-1)=x(2x+1) equation:


Simplifying
(5x + -2)(x + -1) = x(2x + 1)

Reorder the terms:
(-2 + 5x)(x + -1) = x(2x + 1)

Reorder the terms:
(-2 + 5x)(-1 + x) = x(2x + 1)

Multiply (-2 + 5x) * (-1 + x)
(-2(-1 + x) + 5x * (-1 + x)) = x(2x + 1)
((-1 * -2 + x * -2) + 5x * (-1 + x)) = x(2x + 1)
((2 + -2x) + 5x * (-1 + x)) = x(2x + 1)
(2 + -2x + (-1 * 5x + x * 5x)) = x(2x + 1)
(2 + -2x + (-5x + 5x2)) = x(2x + 1)

Combine like terms: -2x + -5x = -7x
(2 + -7x + 5x2) = x(2x + 1)

Reorder the terms:
2 + -7x + 5x2 = x(1 + 2x)
2 + -7x + 5x2 = (1 * x + 2x * x)
2 + -7x + 5x2 = (1x + 2x2)

Solving
2 + -7x + 5x2 = 1x + 2x2

Solving for variable 'x'.

Reorder the terms:
2 + -7x + -1x + 5x2 + -2x2 = 1x + 2x2 + -1x + -2x2

Combine like terms: -7x + -1x = -8x
2 + -8x + 5x2 + -2x2 = 1x + 2x2 + -1x + -2x2

Combine like terms: 5x2 + -2x2 = 3x2
2 + -8x + 3x2 = 1x + 2x2 + -1x + -2x2

Reorder the terms:
2 + -8x + 3x2 = 1x + -1x + 2x2 + -2x2

Combine like terms: 1x + -1x = 0
2 + -8x + 3x2 = 0 + 2x2 + -2x2
2 + -8x + 3x2 = 2x2 + -2x2

Combine like terms: 2x2 + -2x2 = 0
2 + -8x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
0.6666666667 + -2.666666667x + x2 = 0

Move the constant term to the right:

Add '-0.6666666667' to each side of the equation.
0.6666666667 + -2.666666667x + -0.6666666667 + x2 = 0 + -0.6666666667

Reorder the terms:
0.6666666667 + -0.6666666667 + -2.666666667x + x2 = 0 + -0.6666666667

Combine like terms: 0.6666666667 + -0.6666666667 = 0.0000000000
0.0000000000 + -2.666666667x + x2 = 0 + -0.6666666667
-2.666666667x + x2 = 0 + -0.6666666667

Combine like terms: 0 + -0.6666666667 = -0.6666666667
-2.666666667x + x2 = -0.6666666667

The x term is -2.666666667x.  Take half its coefficient (-1.333333334).
Square it (1.777777780) and add it to both sides.

Add '1.777777780' to each side of the equation.
-2.666666667x + 1.777777780 + x2 = -0.6666666667 + 1.777777780

Reorder the terms:
1.777777780 + -2.666666667x + x2 = -0.6666666667 + 1.777777780

Combine like terms: -0.6666666667 + 1.777777780 = 1.1111111133
1.777777780 + -2.666666667x + x2 = 1.1111111133

Factor a perfect square on the left side:
(x + -1.333333334)(x + -1.333333334) = 1.1111111133

Calculate the square root of the right side: 1.054092554

Break this problem into two subproblems by setting 
(x + -1.333333334) equal to 1.054092554 and -1.054092554.

Subproblem 1

x + -1.333333334 = 1.054092554 Simplifying x + -1.333333334 = 1.054092554 Reorder the terms: -1.333333334 + x = 1.054092554 Solving -1.333333334 + x = 1.054092554 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1.333333334' to each side of the equation. -1.333333334 + 1.333333334 + x = 1.054092554 + 1.333333334 Combine like terms: -1.333333334 + 1.333333334 = 0.000000000 0.000000000 + x = 1.054092554 + 1.333333334 x = 1.054092554 + 1.333333334 Combine like terms: 1.054092554 + 1.333333334 = 2.387425888 x = 2.387425888 Simplifying x = 2.387425888

Subproblem 2

x + -1.333333334 = -1.054092554 Simplifying x + -1.333333334 = -1.054092554 Reorder the terms: -1.333333334 + x = -1.054092554 Solving -1.333333334 + x = -1.054092554 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1.333333334' to each side of the equation. -1.333333334 + 1.333333334 + x = -1.054092554 + 1.333333334 Combine like terms: -1.333333334 + 1.333333334 = 0.000000000 0.000000000 + x = -1.054092554 + 1.333333334 x = -1.054092554 + 1.333333334 Combine like terms: -1.054092554 + 1.333333334 = 0.27924078 x = 0.27924078 Simplifying x = 0.27924078

Solution

The solution to the problem is based on the solutions from the subproblems. x = {2.387425888, 0.27924078}

See similar equations:

| 2ln(x)=ln(4)+ln(x+3) | | 9x-2=3x+70 | | (5x-2)(x-1)=x(x+1) | | 2a-3(3a-5)=7a+6 | | 4y+8=2y-6 | | -4x^2+5x+100=0 | | X^2=.064 | | 3(5-3t)+5t=-2t-7 | | 15x+12x+17=180 | | 13-2n=4+n | | 2x^4+3x^3-4x^2-x+14=0 | | 4y+2-y=6 | | 2x+5(x-10)=-1 | | 3(5x+2)-(9x-8)=7(x+12) | | 2x^4+3x^3-4x^2-x+14=-12 | | 3x-2=18-2x | | -2x+5(x-10)=-1 | | 5(5-1)+-3125-7= | | 3b^2+5b= | | 5x^4+4x^3= | | 5r+3f=12 | | 20-12=4(x-1) | | (x-3)(2x-5)+6=2x^2-12 | | -6x-2=4x-1 | | 18w-2-10w+14= | | 6p^4-486p^2= | | 9x^2+27x-7=0 | | 12x^2-6x-3=3-5x | | f(x)=2x^2+20x+49 | | sin(2x-30)=cos(3x+5) | | (-7-3m^3-3m^4)+(-8m-8m^3-m^4)= | | 4z=16-40 |

Equations solver categories