(5x-3)(3x-1)=(6x+1)(2x-5)

Simple and best practice solution for (5x-3)(3x-1)=(6x+1)(2x-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5x-3)(3x-1)=(6x+1)(2x-5) equation:



(5x-3)(3x-1)=(6x+1)(2x-5)
We move all terms to the left:
(5x-3)(3x-1)-((6x+1)(2x-5))=0
We multiply parentheses ..
(+15x^2-5x-9x+3)-((6x+1)(2x-5))=0
We calculate terms in parentheses: -((6x+1)(2x-5)), so:
(6x+1)(2x-5)
We multiply parentheses ..
(+12x^2-30x+2x-5)
We get rid of parentheses
12x^2-30x+2x-5
We add all the numbers together, and all the variables
12x^2-28x-5
Back to the equation:
-(12x^2-28x-5)
We get rid of parentheses
15x^2-12x^2-5x-9x+28x+3+5=0
We add all the numbers together, and all the variables
3x^2+14x+8=0
a = 3; b = 14; c = +8;
Δ = b2-4ac
Δ = 142-4·3·8
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{100}=10$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-10}{2*3}=\frac{-24}{6} =-4 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+10}{2*3}=\frac{-4}{6} =-2/3 $

See similar equations:

| x/5+5x=4 | | 2x+56=8x+74 | | X^2-2x+2=5x-4 | | 3x+0,55=-8x | | (p+3)*(p+3)=(p+6)*(p+1) | | p+3*p+3=p+6*p+1 | | -4(x+2)=7(x+6)-5 | | 3(5x-2+2)=2x3x-2-) | | x-22x=66 | | 11x=-5/9 | | 3x-(3x+1)=12+5(x-1) | | 66x-22=x | | 4y+6=-7 | | 4xx=18.8 | | 3.7+w/3=-1.1 | | -3(x+1)=6(x+6)-5 | | 7/12u+1/6=4 | | 2u-1.1=5.3 | | 7/13u=4-1/6 | | 12=4+y/20.48 | | 2x+4x+x=1300 | | 5x+0,6=-6x | | 4b–6=2b | | -14x=66 | | 1.142857142857x=1 | | 2/7x+7=6/7 | | a/4+2=2 | | 1.0142857142857x+4=0.142857142857*6 | | 4x-(3x+1)=8+6(x-1) | | 4x-(2x+1)=8+6(x+1) | | 0,2x-5=-1 | | 0,2x-5=1 |

Equations solver categories