(5x-4)(x+4)=(4x-5)(x+8)

Simple and best practice solution for (5x-4)(x+4)=(4x-5)(x+8) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5x-4)(x+4)=(4x-5)(x+8) equation:



(5x-4)(x+4)=(4x-5)(x+8)
We move all terms to the left:
(5x-4)(x+4)-((4x-5)(x+8))=0
We multiply parentheses ..
(+5x^2+20x-4x-16)-((4x-5)(x+8))=0
We calculate terms in parentheses: -((4x-5)(x+8)), so:
(4x-5)(x+8)
We multiply parentheses ..
(+4x^2+32x-5x-40)
We get rid of parentheses
4x^2+32x-5x-40
We add all the numbers together, and all the variables
4x^2+27x-40
Back to the equation:
-(4x^2+27x-40)
We get rid of parentheses
5x^2-4x^2+20x-4x-27x-16+40=0
We add all the numbers together, and all the variables
x^2-11x+24=0
a = 1; b = -11; c = +24;
Δ = b2-4ac
Δ = -112-4·1·24
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-5}{2*1}=\frac{6}{2} =3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+5}{2*1}=\frac{16}{2} =8 $

See similar equations:

| -47+3b=7-3b | | 2b^2-6=-4b | | x²-12x+9=2x-4 | | 50+35b=190 | | 3x+5(x-6)=34 | | 4x+35=-10-x | | 9-3n+4+10n=41 | | -43=-1+t | | 4n-2n-2n+5n=15 | | 4x+-9=-36 | | -4+12y+8=16+16y-40 | | 4y+42=8-10y | | 2m=11=37 | | 12x+9=6x+3 | | 24x+7=30x-23 | | 11x+12=12x-8 | | 0=-3(x-2/3)+19 | | 17=k-20 | | 12=0.15/x | | (3x-1^4x=1 | | 3-9x=48 | | 10b-6b=-16 | | 3/x+6=10 | | 3x+x=280 | | 8-7d=92 | | 5m+7=m+47 | | 150m-125m+38,800=40,200-175m | | 4j^2+96j+92=0 | | 21+3c=-4c+28 | | -15×+a=-10 | | -2(j-12)=18 | | 20-4x=20-5x |

Equations solver categories