If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(5x-40)+(x+40)+(1/2x+50)=180
We move all terms to the left:
(5x-40)+(x+40)+(1/2x+50)-(180)=0
Domain of the equation: 2x+50)!=0We get rid of parentheses
x∈R
5x+x+1/2x-40+40+50-180=0
We multiply all the terms by the denominator
5x*2x+x*2x-40*2x+40*2x+50*2x-180*2x+1=0
Wy multiply elements
10x^2+2x^2-80x+80x+100x-360x+1=0
We add all the numbers together, and all the variables
12x^2-260x+1=0
a = 12; b = -260; c = +1;
Δ = b2-4ac
Δ = -2602-4·12·1
Δ = 67552
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{67552}=\sqrt{16*4222}=\sqrt{16}*\sqrt{4222}=4\sqrt{4222}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-260)-4\sqrt{4222}}{2*12}=\frac{260-4\sqrt{4222}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-260)+4\sqrt{4222}}{2*12}=\frac{260+4\sqrt{4222}}{24} $
| 6x+1/2x+50=180 | | 3x+4x+x+2x=180° | | 3×9^2x=27^5-x | | 11x=16+8x-7 | | (y=2)(y=5) | | 0.1x=1/5 | | {3}^{x+1}+{3}^{x-1}=30 | | 3/7=x/196 | | 2^3x*3^x-2^(3x-1)*3^(x+1)=288 | | 0.8(2x-6)=0.3+0.9 | | 3y-1/3=5 | | x5=3.5 | | 16+7x=-9x | | x+0.1x=2050000 | | x+0.1x=20500000 | | 2y=6×+12 | | x-0.12x=473 | | x+29=4x-1 | | x+29=4×x-1 | | x/x=26 | | .z2+25=0 | | X×y=143 | | 8=9/32x^2+9/8x-32 | | _r+3-1/9r=2r+18/9r | | 7=5y-13-5 | | 2x+13=-3x+8+5(x+1) | | -2(3x-9)=-6x+5 | | 2x^2+9x–4=0 | | -22x+66=-11(2x-6) | | -8(-x+5)=4x-10+4x-30 | | x=7x8/9 | | x4+6x3+9x2-100=0 |