(5x2-7x-3)=(5x-9)

Simple and best practice solution for (5x2-7x-3)=(5x-9) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5x2-7x-3)=(5x-9) equation:



(5x^2-7x-3)=(5x-9)
We move all terms to the left:
(5x^2-7x-3)-((5x-9))=0
We get rid of parentheses
5x^2-7x-((5x-9))-3=0
We calculate terms in parentheses: -((5x-9)), so:
(5x-9)
We get rid of parentheses
5x-9
Back to the equation:
-(5x-9)
We get rid of parentheses
5x^2-7x-5x+9-3=0
We add all the numbers together, and all the variables
5x^2-12x+6=0
a = 5; b = -12; c = +6;
Δ = b2-4ac
Δ = -122-4·5·6
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{6}}{2*5}=\frac{12-2\sqrt{6}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{6}}{2*5}=\frac{12+2\sqrt{6}}{10} $

See similar equations:

| 800=39x+11x+5.5x | | x/48=6/8 | | x(x-6)=(x+2)(x-7) | | 5(2p+1)=3(3p-1) | | (2a+4)=(5a-8) | | x/3.1=5 | | (2a+)=(5a-8) | | 5x+9=5+ | | 4-11i=11.7 | | 20=-2a | | 12/b=6 | | -2k=-26 | | 8a+16=0 | | -5=3+z | | 10m+(7m+4)-5m=16 | | x/7=2.3 | | 2^(3-x)=16 | | 9e+4=-5e+14+134e | | -9(x-6)=-207 | | x/2.76=3 | | 20=10x+100 | | 5(x+1)-2(2x-3)=3 | | (-3x-8)=(-2x+7) | | 3(6x-2)-3(3x-13)=4(2x+3)-10 | | x^2-5x=4x+36 | | 12=2x+2= | | Y=210+33x | | b/8=-10 | | 4^x+5=125 | | 6=3/5v | | 9v+v=56 | | x/4-x/6=-1 |

Equations solver categories