If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (5y + 6)(6y + 5) = 0 Reorder the terms: (6 + 5y)(6y + 5) = 0 Reorder the terms: (6 + 5y)(5 + 6y) = 0 Multiply (6 + 5y) * (5 + 6y) (6(5 + 6y) + 5y * (5 + 6y)) = 0 ((5 * 6 + 6y * 6) + 5y * (5 + 6y)) = 0 ((30 + 36y) + 5y * (5 + 6y)) = 0 (30 + 36y + (5 * 5y + 6y * 5y)) = 0 (30 + 36y + (25y + 30y2)) = 0 Combine like terms: 36y + 25y = 61y (30 + 61y + 30y2) = 0 Solving 30 + 61y + 30y2 = 0 Solving for variable 'y'. Factor a trinomial. (6 + 5y)(5 + 6y) = 0Subproblem 1
Set the factor '(6 + 5y)' equal to zero and attempt to solve: Simplifying 6 + 5y = 0 Solving 6 + 5y = 0 Move all terms containing y to the left, all other terms to the right. Add '-6' to each side of the equation. 6 + -6 + 5y = 0 + -6 Combine like terms: 6 + -6 = 0 0 + 5y = 0 + -6 5y = 0 + -6 Combine like terms: 0 + -6 = -6 5y = -6 Divide each side by '5'. y = -1.2 Simplifying y = -1.2Subproblem 2
Set the factor '(5 + 6y)' equal to zero and attempt to solve: Simplifying 5 + 6y = 0 Solving 5 + 6y = 0 Move all terms containing y to the left, all other terms to the right. Add '-5' to each side of the equation. 5 + -5 + 6y = 0 + -5 Combine like terms: 5 + -5 = 0 0 + 6y = 0 + -5 6y = 0 + -5 Combine like terms: 0 + -5 = -5 6y = -5 Divide each side by '6'. y = -0.8333333333 Simplifying y = -0.8333333333Solution
y = {-1.2, -0.8333333333}
| 4x+2(x+2)=5(x+1) | | 2x+-3(1-x)=0x+4(1-x) | | (w)=12w^2+17w-40 | | Y+112=334 | | 2(2x+x)+2(10+5)=x+x+20+15(1+1) | | x^3+4x^2-3x=0 | | f(w)=12w^2+17w-40 | | (3d+5)(d-7)=0 | | 7-8s+5s+7+4s= | | (5i+4)(i+4)=0 | | -4x+4(1-x)=3x+0(1-x) | | 0.6w=0 | | 5p=30-10n | | 4x^2-x=17 | | 7j(8j-1)=0 | | 3x-5(1-x)=-2x+3(1-x) | | 1/5*x=210 | | 10.36+23.199x=56.758 | | (6x+7)(4x+3)=0 | | 3x+21=16x-10 | | 7c^4=-1512c | | -6÷(-3/7) | | -5x-66-6x+30=118 | | 5=-16t^2+26t | | -4x+3(1-x)=-5x+-1(1-x) | | 2x+-4(1-x)=-2x+-2(1-x) | | 96v^2-54=0 | | 2(3x+1)+5-3=x+22+2 | | ((3x/2x-1)-2)/((5/4x)-x/2x-1) | | -121=-y^2 | | (X+4)(x-1)=o | | 2/5a-1-3 |