(5y2+2y-9)-(2y2+2y-3)=

Simple and best practice solution for (5y2+2y-9)-(2y2+2y-3)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5y2+2y-9)-(2y2+2y-3)= equation:



(5y^2+2y-9)-(2y^2+2y-3)=
We move all terms to the left:
(5y^2+2y-9)-(2y^2+2y-3)-()=0
We add all the numbers together, and all the variables
(5y^2+2y-9)-(2y^2+2y-3)=0
We get rid of parentheses
5y^2-2y^2+2y-2y-9+3=0
We add all the numbers together, and all the variables
3y^2-6=0
a = 3; b = 0; c = -6;
Δ = b2-4ac
Δ = 02-4·3·(-6)
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{2}}{2*3}=\frac{0-6\sqrt{2}}{6} =-\frac{6\sqrt{2}}{6} =-\sqrt{2} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{2}}{2*3}=\frac{0+6\sqrt{2}}{6} =\frac{6\sqrt{2}}{6} =\sqrt{2} $

See similar equations:

| 7/11=u/4 | | (4x3-9x2+3x+7)+(-2x3+4x2+10x-5)= | | v/13=8/11 | | 150m−100m+43,200=45,900−175m | | 2x-(3-5x)=4(x+3 | | 2y/3=24 | | 30+2x=4x | | 3x+x+(3x-20)=190 | | 3x⌃2-8x=16 | | 15z-7=14z+7 | | 6−6w=-7w | | 4​(a-4​)=8a-(4a-16​) | | -5p+9=-6p+5 | | g=-g+8 | | 4y^2-40y+24=0 | | -4p=-5p+8 | | 16=-8m-8m | | 16=-6n+8n | | 3x(7+10)=G+30 | | x^2-x-1=x2−x−1=-6x-1 | | 10x+17=-3 | | 0/7=15.8/x | | -20=3x+x | | -4=v+8+5v | | xX8/160=7.44 | | 7x-3+5x-3=180 | | 8y-3=16(1-2y) | | 5.6g+7=2.6g+13 | | 1x+24=20x+26 | | x6-7=65 | | -(2-3x)/6+1/12=-3/4+(4x-5)/2 | | (5x+15)(7x+15)=51 |

Equations solver categories