(6+2i)(4-3i)=30i-10i

Simple and best practice solution for (6+2i)(4-3i)=30i-10i equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6+2i)(4-3i)=30i-10i equation:



(6+2i)(4-3i)=30i-10i
We move all terms to the left:
(6+2i)(4-3i)-(30i-10i)=0
We add all the numbers together, and all the variables
(2i+6)(-3i+4)-(+20i)=0
We get rid of parentheses
(2i+6)(-3i+4)-20i=0
We multiply parentheses ..
(-6i^2+8i-18i+24)-20i=0
We get rid of parentheses
-6i^2+8i-18i-20i+24=0
We add all the numbers together, and all the variables
-6i^2-30i+24=0
a = -6; b = -30; c = +24;
Δ = b2-4ac
Δ = -302-4·(-6)·24
Δ = 1476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1476}=\sqrt{36*41}=\sqrt{36}*\sqrt{41}=6\sqrt{41}$
$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-6\sqrt{41}}{2*-6}=\frac{30-6\sqrt{41}}{-12} $
$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+6\sqrt{41}}{2*-6}=\frac{30+6\sqrt{41}}{-12} $

See similar equations:

| 6-b-(-2b)-(-9)+8b+(-7)=14b-(-8)-3-2b+15-(-b) | | 2x+23=-11 | | 6-8x=2x | | 13x-10=10x-4 | | x−20=−55 | | 100÷c=10 | | -11h=55 | | 3×(x+5)+2x=20 | | b/7-3=11 | | r+r+14=90 | | 3(3x+7)^2+6=114 | | 3z+11+6-(-6z)=-1 | | 2a-(-17)+(-4a)+12-a=3-8a-(-1)+(-8)+5a= | | 4x‐12=5x‐15 | | n-(-9)=15 | | 7x+10+3x=+20 | | 4m-1=2m+3 | | 14.88+x=14.05 | | 2100-25d=1500 | | Y=2x+54=8x | | 8x+16=9x-1 | | 3x+10=50+x+20 | | -4-4m=-68 | | x+58=47 | | –5=z+96–6 | | -11n+1=-252 | | -5(m+1)=28 | | x+12+x=10 | | 4(–5+x)=–4 | | 92+w=10 | | p+17+14=66 | | 12(2n+6)=8 |

Equations solver categories