(6-x)(3-x)=(2)(6-2x)

Simple and best practice solution for (6-x)(3-x)=(2)(6-2x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6-x)(3-x)=(2)(6-2x) equation:



(6-x)(3-x)=(2)(6-2x)
We move all terms to the left:
(6-x)(3-x)-((2)(6-2x))=0
We add all the numbers together, and all the variables
(-1x+6)(-1x+3)-(2(-2x+6))=0
We multiply parentheses ..
(+x^2-3x-6x+18)-(2(-2x+6))=0
We calculate terms in parentheses: -(2(-2x+6)), so:
2(-2x+6)
We multiply parentheses
-4x+12
Back to the equation:
-(-4x+12)
We get rid of parentheses
x^2-3x-6x+4x+18-12=0
We add all the numbers together, and all the variables
x^2-5x+6=0
a = 1; b = -5; c = +6;
Δ = b2-4ac
Δ = -52-4·1·6
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-1}{2*1}=\frac{4}{2} =2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+1}{2*1}=\frac{6}{2} =3 $

See similar equations:

| 4s-25=47 | | √3x^2+10x+7√3=0 | | 6a+10=3a+5 | | 0=16-3t^2 | | 9y-12=30 | | x^2=36-3x^2 | | 15x^2-20x+5=0 | | x+5=(10+5)+9x2+ | | 2(x-6)^2=24 | | 4(3+e)+e=e+4 | | 4a-3=7a-12 | | -(x-3)+2=-1-(3x+2) | | 3(2x-5)+9=-7 | | -7+3x+1=5x-30+x | | -2(-7x-7)=-10-(x+9) | | P(9)=(2800)/(1+(7e)^-0.1(9)) | | x2+7=32 | | 180=90+(90-1y)+y | | 4(x-2)=3(x+1)-6 | | 5x-3=-3+7x | | 5b+12=5 | | 10x^2-48x+39=0 | | 8x−19=-11 | | n^2-23n+100=0 | | 4a-15=0 | | 5x+6=1x+124 | | 2/3(2y+1)^0.2=6 | | T(n)=2n^2-3 | | (7-x)*9=3x*7 | | 3x+24=8x+12 | | 1x+6=1 | | 2x+12=1x |

Equations solver categories