(6/11)(x+5)=6

Simple and best practice solution for (6/11)(x+5)=6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6/11)(x+5)=6 equation:



(6/11)(x+5)=6
We move all terms to the left:
(6/11)(x+5)-(6)=0
Domain of the equation: 11)(x+5)!=0
x∈R
We add all the numbers together, and all the variables
(+6/11)(x+5)-6=0
We multiply parentheses ..
(+6x^2+6/11*5)-6=0
We multiply all the terms by the denominator
(+6x^2+6-6*11*5)=0
We get rid of parentheses
6x^2+6-6*11*5=0
We add all the numbers together, and all the variables
6x^2-324=0
a = 6; b = 0; c = -324;
Δ = b2-4ac
Δ = 02-4·6·(-324)
Δ = 7776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7776}=\sqrt{1296*6}=\sqrt{1296}*\sqrt{6}=36\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36\sqrt{6}}{2*6}=\frac{0-36\sqrt{6}}{12} =-\frac{36\sqrt{6}}{12} =-3\sqrt{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36\sqrt{6}}{2*6}=\frac{0+36\sqrt{6}}{12} =\frac{36\sqrt{6}}{12} =3\sqrt{6} $

See similar equations:

| 6+3n=-6 | | 2(2x+3)=7x-12 | | -15=15x=0 | | 9-10c=-8c-1 | | 21x-3=180 | | 10n+40=15n | | (4x+17)+(8x+5)=180 | | (2x+3)/4=(4x-2)/6 | | b=8-7b | | 14+5x=5+2x | | 1/3=2/3c | | (X+9)+164+4x+(x-5)=180 | | 25+5x=275 | | -3w+10-7w=-5w-10 | | 5=3x=5+2x-5x | | =3(6y)+2 | | 2/5n+11=3/5n | | -2-a/5=3a | | -26+3x=-52-13x | | -46-12x=-15x+35 | | -6x-1=-1-7x | | (8x−10)+(4x+52)=90 | | -6k=-63 | | 4(x=1)=2(x-8) | | -4x-261=7x+80 | | 2v+28=4v-10 | | r+4=-6 | | 6/7•c=12 | | 11=b-7 | | 3(6k+6)=90 | | (3+y)/2=(y+1)/4 | | 5-6a=-6a+5 |

Equations solver categories