(6/5)(y+1)=(7/5)y

Simple and best practice solution for (6/5)(y+1)=(7/5)y equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6/5)(y+1)=(7/5)y equation:



(6/5)(y+1)=(7/5)y
We move all terms to the left:
(6/5)(y+1)-((7/5)y)=0
Domain of the equation: 5)(y+1)!=0
y∈R
Domain of the equation: 5)y)!=0
y!=0/1
y!=0
y∈R
We add all the numbers together, and all the variables
(+6/5)(y+1)-((+7/5)y)=0
We multiply parentheses ..
(+6y^2+6/5*1)-((+7/5)y)=0
We calculate fractions
(6y^2+30y)/25y^2+()/25y^2=0
We multiply all the terms by the denominator
(6y^2+30y)+()=0
We add all the numbers together, and all the variables
(6y^2+30y)=0
We get rid of parentheses
6y^2+30y=0
a = 6; b = 30; c = 0;
Δ = b2-4ac
Δ = 302-4·6·0
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{900}=30$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-30}{2*6}=\frac{-60}{12} =-5 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+30}{2*6}=\frac{0}{12} =0 $

See similar equations:

| -3(x-1)+8x(x-3)=6x+7-5x | | 64x2=100 | | -(3x-2)+4=15x | | 180=x+(7x-15)+7x | | 5000+0.05x=400 | | -v/12+5=16 | | 9h+7=-113 | | 180=(4x-15)+x | | d-25=28 | | 5(5x-6)=-67.8 | | 90=(4x-15)+x | | 400=5000+0.05x | | 8a-4=6a+16 | | 12+(x*5)=-3 | | 24/224.701=x/225 | | 3^n=2^102 | | 3(2x+3)=-36-27(x+2) | | (X+2)+2x+(x+8)=180 | | 224.701/24=225/x | | -16+4x=-32+-26x | | 13=2-(4/x) | | 9x+3x=7x+13 | | 4x^2=248 | | 3x²=x-5=0 | | 36=4x-6x12 | | 4z/10-3=2 | | 14x+6=12x×10 | | 36=4x-6(12) | | 6=3/2y | | 4s+44=120 | | 3x+6=-3x+12 | | t-(64+0.36)=30.5 |

Equations solver categories