(6/7)+(1/8)x=2

Simple and best practice solution for (6/7)+(1/8)x=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6/7)+(1/8)x=2 equation:



(6/7)+(1/8)x=2
We move all terms to the left:
(6/7)+(1/8)x-(2)=0
Domain of the equation: 8)x!=0
x!=0/1
x!=0
x∈R
determiningTheFunctionDomain (1/8)x-2+(6/7)=0
We add all the numbers together, and all the variables
(+1/8)x-2+(+6/7)=0
We multiply parentheses
x^2-2+(+6/7)=0
We get rid of parentheses
x^2-2+6/7=0
We multiply all the terms by the denominator
x^2*7+6-2*7=0
We add all the numbers together, and all the variables
x^2*7-8=0
Wy multiply elements
7x^2-8=0
a = 7; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·7·(-8)
Δ = 224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{224}=\sqrt{16*14}=\sqrt{16}*\sqrt{14}=4\sqrt{14}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{14}}{2*7}=\frac{0-4\sqrt{14}}{14} =-\frac{4\sqrt{14}}{14} =-\frac{2\sqrt{14}}{7} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{14}}{2*7}=\frac{0+4\sqrt{14}}{14} =\frac{4\sqrt{14}}{14} =\frac{2\sqrt{14}}{7} $

See similar equations:

| 9(x/3+1)=6 | | .75(8x-4)=6x+5 | | b=55+(10+7) | | 52-3u=58 | | -6x-2x=-8x | | -3/4(-2x+1)=-3 | | 6/7+1/8x=2 | | 0.12/0.8=0.6/x | | (w-5)^2-27=0 | | |3x-2|-2=0 | | 3x-10=9x-16 | | 4x+2=6×-4 | | 5/2s-s=3+3/2s | | 7+2(m-4)=3;1 | | 1/3(9x+3)=x+1 | | -5x+4-3=x+1 | | 2(x-2)=3x-3-x | | Y=-16800+24x/21 | | 7b-5=2b=5 | | X=5,3x | | x/5.9=8.5 | | h/7-(-5)=-2 | | 3g+-6(g-8)=42 | | -5/3w+1/3=-2w-6/5 | | 4(3x-9)-3=4(x-4)+17 | | 6+2X=7x-7 | | 16-3y+4y=24 | | b=75+(10+7) | | 7y-4=14y+38 | | 27=15a-7 | | 4(x-4)=5x-9-x | | 2.7+6.7n=n+25.9 |

Equations solver categories