(6/9)x=540

Simple and best practice solution for (6/9)x=540 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6/9)x=540 equation:



(6/9)x=540
We move all terms to the left:
(6/9)x-(540)=0
Domain of the equation: 9)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+6/9)x-540=0
We multiply parentheses
6x^2-540=0
a = 6; b = 0; c = -540;
Δ = b2-4ac
Δ = 02-4·6·(-540)
Δ = 12960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12960}=\sqrt{1296*10}=\sqrt{1296}*\sqrt{10}=36\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36\sqrt{10}}{2*6}=\frac{0-36\sqrt{10}}{12} =-\frac{36\sqrt{10}}{12} =-3\sqrt{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36\sqrt{10}}{2*6}=\frac{0+36\sqrt{10}}{12} =\frac{36\sqrt{10}}{12} =3\sqrt{10} $

See similar equations:

| 41=x+7 | | 56-g=78 | | 2x+4/5=3x-3 | | -16x^2+30x+31=42 | | 5x^2-2x+100=0 | | 9=-d | | x-5=10+2x | | 4^2x+2=12 | | 12+f=34 | | 3(x-1)=3(2x-1) | | e+(-78)=90 | | 16=-4/x | | -x^2+8x=7 | | 8(a)=12(a-4) | | 6x+7=6-7x | | A^2-11a+25=0 | | x/5=2+x/3 | | 4x+34-7x=34 | | d+34=-56 | | 4(h−17)−3=1 | | a=2.5-3a | | Y=4x-3;(3,9) | | 3x/5+1/2=x-1/4 | | 3k-10k-5k-(-18)=10 | | 16p2–13p–3=0 | | -2(5y-4)-y=-4(y-3) | | 3x+5.5=10 | | 3a+203aa=180 | | x+(x-8)+(3x)=112 | | 6(x+3)-6=6x-3 | | 10x+17=3(3x+5) | | 185.7+x=271.94 |

Equations solver categories