(62-7)+5x+(15/5x)=180

Simple and best practice solution for (62-7)+5x+(15/5x)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (62-7)+5x+(15/5x)=180 equation:



(62-7)+5x+(15/5x)=180
We move all terms to the left:
(62-7)+5x+(15/5x)-(180)=0
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
determiningTheFunctionDomain 5x+(15/5x)-180+(62-7)=0
We add all the numbers together, and all the variables
5x+(+15/5x)-180+55=0
We add all the numbers together, and all the variables
5x+(+15/5x)-125=0
We get rid of parentheses
5x+15/5x-125=0
We multiply all the terms by the denominator
5x*5x-125*5x+15=0
Wy multiply elements
25x^2-625x+15=0
a = 25; b = -625; c = +15;
Δ = b2-4ac
Δ = -6252-4·25·15
Δ = 389125
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{389125}=\sqrt{25*15565}=\sqrt{25}*\sqrt{15565}=5\sqrt{15565}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-625)-5\sqrt{15565}}{2*25}=\frac{625-5\sqrt{15565}}{50} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-625)+5\sqrt{15565}}{2*25}=\frac{625+5\sqrt{15565}}{50} $

See similar equations:

| 6a+11-8+4a=7a+5+4 | | 5(2y-3)+4=6y-10 | | 13x+15=8x+35 | | -3b-9b=129-29 | | 136°=(7x+9)° | | x/6−1=−3 | | (2y+1)=(y+14)=0 | | -3x+0=-15-6x | | 1.5x+3x=2.3+2.3x | | 9/r=12 | | x=-5(2x-7)-19 | | 9/r=13 | | 0.5x+34=0.65x+4 | | 4x+16=12x-40 | | .30+6p=7(p+6)-5 | | (1/2)5x+8=3x+12 | | -11=3-p | | 2x-10=+70 | | (2y+1)=(y+14) | | 4(3x-3)-5=31 | | 4x+8=10x+60 | | -4(1-8x)-4(8x+4)=0 | | 3x²+2=7x | | t–7=–7 | | f+17=17 | | 10-5=2p+3 | | 10x+60=25 | | -7+3j=3+j | | 6(c-7)+10=-26 | | (4x+13)+(6x+2)+((180-(14x-13))=180 | | -5(1+2x)-8(-4+5x)=0 | | A=1/2h*(8+12) |

Equations solver categories