(66+x)(40+x)=14300

Simple and best practice solution for (66+x)(40+x)=14300 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (66+x)(40+x)=14300 equation:



(66+x)(40+x)=14300
We move all terms to the left:
(66+x)(40+x)-(14300)=0
We add all the numbers together, and all the variables
(x+66)(x+40)-14300=0
We multiply parentheses ..
(+x^2+40x+66x+2640)-14300=0
We get rid of parentheses
x^2+40x+66x+2640-14300=0
We add all the numbers together, and all the variables
x^2+106x-11660=0
a = 1; b = 106; c = -11660;
Δ = b2-4ac
Δ = 1062-4·1·(-11660)
Δ = 57876
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{57876}=\sqrt{4*14469}=\sqrt{4}*\sqrt{14469}=2\sqrt{14469}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(106)-2\sqrt{14469}}{2*1}=\frac{-106-2\sqrt{14469}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(106)+2\sqrt{14469}}{2*1}=\frac{-106+2\sqrt{14469}}{2} $

See similar equations:

| 2(4z-1)=3(z-1)=3(z+2) | | |f|-(-3)=11 | | -5(x+3)-6=x+3 | | 3(1)2y=6 | | 7x-2(4x-2)=-7 | | 7x+9+9x+9=114 | | 3x+16=2x-8 | | 5(7x-13)=40 | | 2x+12.85=62 | | 3x+2x-4+7=33 | | 6x+3(-4x-5)=75 | | 9m=4m=-35 | | .25=3/9+a | | 3*x-11=5x+7 | | 7x-3(5x+5)=25 | | 3(20-x)=44 | | 3(-28)+3(4x)=24 | | t/4+t/1=1 | | 20-(-x+14)=32 | | (4x+7)+(11x-9)=148 | | |-4+8x|=68 | | (12)(-7)+3(4x)=24 | | 0.17(y-2)+0.28y=0.05y-0.30 | | x/4.5+(-7/20)=0 | | 12(-7)+3(4x)=24 | | 4x+2(1-x)=3-4(2-x)-2x | | 4x2-28=0 | | (2x+3)(2x-3)-4xx(x-2)=7 | | 10x-56=3x | | x/7+9=23 | | (7x-20)+(4x)+(90)=180 | | -28+3(4x)=24 |

Equations solver categories