(66+y)*(55+y)+-57.333=33

Simple and best practice solution for (66+y)*(55+y)+-57.333=33 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (66+y)*(55+y)+-57.333=33 equation:


Simplifying
(66 + y)(55 + y) + -57.333 = 33

Multiply (66 + y) * (55 + y)
(66(55 + y) + y(55 + y)) + -57.333 = 33
((55 * 66 + y * 66) + y(55 + y)) + -57.333 = 33
((3630 + 66y) + y(55 + y)) + -57.333 = 33
(3630 + 66y + (55 * y + y * y)) + -57.333 = 33
(3630 + 66y + (55y + y2)) + -57.333 = 33

Combine like terms: 66y + 55y = 121y
(3630 + 121y + y2) + -57.333 = 33

Reorder the terms:
3630 + -57.333 + 121y + y2 = 33

Combine like terms: 3630 + -57.333 = 3572.667
3572.667 + 121y + y2 = 33

Solving
3572.667 + 121y + y2 = 33

Solving for variable 'y'.

Reorder the terms:
3572.667 + -33 + 121y + y2 = 33 + -33

Combine like terms: 3572.667 + -33 = 3539.667
3539.667 + 121y + y2 = 33 + -33

Combine like terms: 33 + -33 = 0
3539.667 + 121y + y2 = 0

Begin completing the square.

Move the constant term to the right:

Add '-3539.667' to each side of the equation.
3539.667 + 121y + -3539.667 + y2 = 0 + -3539.667

Reorder the terms:
3539.667 + -3539.667 + 121y + y2 = 0 + -3539.667

Combine like terms: 3539.667 + -3539.667 = 0.000
0.000 + 121y + y2 = 0 + -3539.667
121y + y2 = 0 + -3539.667

Combine like terms: 0 + -3539.667 = -3539.667
121y + y2 = -3539.667

The y term is 121y.  Take half its coefficient (60.5).
Square it (3660.25) and add it to both sides.

Add '3660.25' to each side of the equation.
121y + 3660.25 + y2 = -3539.667 + 3660.25

Reorder the terms:
3660.25 + 121y + y2 = -3539.667 + 3660.25

Combine like terms: -3539.667 + 3660.25 = 120.583
3660.25 + 121y + y2 = 120.583

Factor a perfect square on the left side:
(y + 60.5)(y + 60.5) = 120.583

Calculate the square root of the right side: 10.981029096

Break this problem into two subproblems by setting 
(y + 60.5) equal to 10.981029096 and -10.981029096.

Subproblem 1

y + 60.5 = 10.981029096 Simplifying y + 60.5 = 10.981029096 Reorder the terms: 60.5 + y = 10.981029096 Solving 60.5 + y = 10.981029096 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-60.5' to each side of the equation. 60.5 + -60.5 + y = 10.981029096 + -60.5 Combine like terms: 60.5 + -60.5 = 0.0 0.0 + y = 10.981029096 + -60.5 y = 10.981029096 + -60.5 Combine like terms: 10.981029096 + -60.5 = -49.518970904 y = -49.518970904 Simplifying y = -49.518970904

Subproblem 2

y + 60.5 = -10.981029096 Simplifying y + 60.5 = -10.981029096 Reorder the terms: 60.5 + y = -10.981029096 Solving 60.5 + y = -10.981029096 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-60.5' to each side of the equation. 60.5 + -60.5 + y = -10.981029096 + -60.5 Combine like terms: 60.5 + -60.5 = 0.0 0.0 + y = -10.981029096 + -60.5 y = -10.981029096 + -60.5 Combine like terms: -10.981029096 + -60.5 = -71.481029096 y = -71.481029096 Simplifying y = -71.481029096

Solution

The solution to the problem is based on the solutions from the subproblems. y = {-49.518970904, -71.481029096}

See similar equations:

| -3(2f+4)=2(4f-6) | | j-17=36 | | (-2+15i)-(7-2i)= | | 4*cos*3x=2 | | (66+y)*(55+y)=33 | | y+(-10)=g | | (66+y)-(55+y)=33 | | (4-i)(9+3i)= | | 4x-13=9x+1 | | 2(4(1)+3)=2(1)+6+3+2(1) | | 2x-9=4x+13 | | y-40(z+66)=59 | | X=2(3.14)y | | 2(4(1)+3)=2x+6+3(2x) | | xy(1-601)=-77 | | 9x-3=4-5x | | A=3(y-x) | | 4123(z+40)-z=4000 | | A=3(x-y)fory | | 6(k+1)=2(2p-7) | | 14=d+(5-10) | | 5-2x-3x-f-6x= | | 100y=1250 | | 45=2(4+X^2)+19 | | (3m+4)+(3-ni)=16-3i | | (-5i)(-3i)= | | n+(5-28)=0 | | 2x+2x+8=28 | | 2x+2x+8=x | | 4(x-15)=-(2x-14) | | 3(x-2)=66 | | 9x=288 |

Equations solver categories