(67+25x)x=300+25x

Simple and best practice solution for (67+25x)x=300+25x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (67+25x)x=300+25x equation:



(67+25x)x=300+25x
We move all terms to the left:
(67+25x)x-(300+25x)=0
We add all the numbers together, and all the variables
(25x+67)x-(25x+300)=0
We multiply parentheses
25x^2+67x-(25x+300)=0
We get rid of parentheses
25x^2+67x-25x-300=0
We add all the numbers together, and all the variables
25x^2+42x-300=0
a = 25; b = 42; c = -300;
Δ = b2-4ac
Δ = 422-4·25·(-300)
Δ = 31764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{31764}=\sqrt{4*7941}=\sqrt{4}*\sqrt{7941}=2\sqrt{7941}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-2\sqrt{7941}}{2*25}=\frac{-42-2\sqrt{7941}}{50} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+2\sqrt{7941}}{2*25}=\frac{-42+2\sqrt{7941}}{50} $

See similar equations:

| 8.x+x=54 | | 4y-12=4y-6-2 | | 4b+5=4b-5 | | 12=5+w/2 | | 1/6v+17=-24 | | 8xX+X=54 | | -x-8=-4x-23 | | (67+25)x=300+20x | | -3+6=-3(2y+7) | | 4x-4x=2-4 | | 5x+34=101 | | 13/14n=-13/14 | | x/6-3.5=12 | | 2/7x+13=x | | ⅝m-⅜=½m+⅞ | | 2(2-3x)=20-4x | | 2x(x-2)=4x^2-5x | | 5.4+u/4=-1.1 | | 66+20x=450 | | 2.1/7.7=x/8.8 | | 35-8a-12=1 | | ¼(5b+11)=19 | | -41=-13+4/3a | | a/4+15=18 | | -4(-5w+3)-3w=5(w-1)-3 | | 45x-4=2 | | 1/3n=3+1/4n | | (10-5x)-8=17 | | 6.30+y=25.00 | | r^2-7r+9=-r | | 17+3x=5+2x | | 2k/5+3/4=2 |

Equations solver categories