If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (6b + 3)(6b + -8) = 0 Reorder the terms: (3 + 6b)(6b + -8) = 0 Reorder the terms: (3 + 6b)(-8 + 6b) = 0 Multiply (3 + 6b) * (-8 + 6b) (3(-8 + 6b) + 6b * (-8 + 6b)) = 0 ((-8 * 3 + 6b * 3) + 6b * (-8 + 6b)) = 0 ((-24 + 18b) + 6b * (-8 + 6b)) = 0 (-24 + 18b + (-8 * 6b + 6b * 6b)) = 0 (-24 + 18b + (-48b + 36b2)) = 0 Combine like terms: 18b + -48b = -30b (-24 + -30b + 36b2) = 0 Solving -24 + -30b + 36b2 = 0 Solving for variable 'b'. Factor out the Greatest Common Factor (GCF), '6'. 6(-4 + -5b + 6b2) = 0 Factor a trinomial. 6((-1 + -2b)(4 + -3b)) = 0 Ignore the factor 6.Subproblem 1
Set the factor '(-1 + -2b)' equal to zero and attempt to solve: Simplifying -1 + -2b = 0 Solving -1 + -2b = 0 Move all terms containing b to the left, all other terms to the right. Add '1' to each side of the equation. -1 + 1 + -2b = 0 + 1 Combine like terms: -1 + 1 = 0 0 + -2b = 0 + 1 -2b = 0 + 1 Combine like terms: 0 + 1 = 1 -2b = 1 Divide each side by '-2'. b = -0.5 Simplifying b = -0.5Subproblem 2
Set the factor '(4 + -3b)' equal to zero and attempt to solve: Simplifying 4 + -3b = 0 Solving 4 + -3b = 0 Move all terms containing b to the left, all other terms to the right. Add '-4' to each side of the equation. 4 + -4 + -3b = 0 + -4 Combine like terms: 4 + -4 = 0 0 + -3b = 0 + -4 -3b = 0 + -4 Combine like terms: 0 + -4 = -4 -3b = -4 Divide each side by '-3'. b = 1.333333333 Simplifying b = 1.333333333Solution
b = {-0.5, 1.333333333}
| 2x^2=-4x-2 | | 2/3x-4/6=5 | | 12=4q+8 | | 18-4x=58 | | 6/5b=1/2 | | z+17.2=7.13 | | -2.4x+1.2+1.2=4.8 | | y=66x-5 | | (5x+6)=(y-9) | | -(b+7)=6 | | ln(8x+4)+2ln(2)=1 | | D^3=1/512 | | 3y+5=4y+6 | | 9d+7=8d+15 | | 2x+95=6x-9 | | 40=4x+4(x+2) | | 7(z+4)=7z+28 | | -22=w/-4 | | 5+5y=90 | | 9.0= | | 48=34+x-2 | | -4y+3y^3+6y^3-3y^3-7y+2= | | 4x+5x^2-10=3x+2x^2 | | -9+55(350-478w)=321 | | -18=-5k+2k | | 9(x-1)=75.6 | | 5m+10=5(m+2) | | (8+N)+5XN= | | 16/9-8/9 | | 1/3z=3/4 | | 7/8=m-3/8 | | -2n+1=-19 |