(6x(3))-(6x(8x))=-11

Simple and best practice solution for (6x(3))-(6x(8x))=-11 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6x(3))-(6x(8x))=-11 equation:


Simplifying
(6x(3)) + -1(6x(8x)) = -11

Reorder the terms for easier multiplication:
(6 * 3x) + -1(6x(8x)) = -11

Multiply 6 * 3
(18x) + -1(6x(8x)) = -11

Remove parenthesis around (8x)
(18x) + -1(6x * 8x) = -11

Reorder the terms for easier multiplication:
(18x) + -1(6 * 8x * x) = -11

Multiply 6 * 8
(18x) + -1(48x * x) = -11

Multiply x * x
(18x) + -1(48x2) = -11

Remove parenthesis around (48x2)
(18x) + -1 * 48x2 = -11

Multiply -1 * 48
(18x) + -48x2 = -11

Solving
(18x) + -48x2 = -11

Solving for variable 'x'.

Reorder the terms:
11 + (18x) + -48x2 = -11 + 11

Combine like terms: -11 + 11 = 0
11 + (18x) + -48x2 = 0

Begin completing the square.  Divide all terms by
-48 the coefficient of the squared term: 

Divide each side by '-48'.
-0.2291666667 + (-0.375x) + x2 = 0

Move the constant term to the right:

Add '0.2291666667' to each side of the equation.
-0.2291666667 + (-0.375x) + 0.2291666667 + x2 = 0 + 0.2291666667

Reorder the terms:
-0.2291666667 + 0.2291666667 + (-0.375x) + x2 = 0 + 0.2291666667

Combine like terms: -0.2291666667 + 0.2291666667 = 0.0000000000
0.0000000000 + (-0.375x) + x2 = 0 + 0.2291666667
(-0.375x) + x2 = 0 + 0.2291666667

Combine like terms: 0 + 0.2291666667 = 0.2291666667
(-0.375x) + x2 = 0.2291666667

The x term is (-0.375x).  Take half its coefficient (-0.1875).
Square it (0.03515625) and add it to both sides.

Add '0.03515625' to each side of the equation.
(-0.375x) + 0.03515625 + x2 = 0.2291666667 + 0.03515625

Reorder the terms:
0.03515625 + (-0.375x) + x2 = 0.2291666667 + 0.03515625

Combine like terms: 0.2291666667 + 0.03515625 = 0.2643229167
0.03515625 + (-0.375x) + x2 = 0.2643229167

Factor a perfect square on the left side:
(x + -0.1875)(x + -0.1875) = 0.2643229167

Calculate the square root of the right side: 0.514123445

Break this problem into two subproblems by setting 
(x + -0.1875) equal to 0.514123445 and -0.514123445.

Subproblem 1

x + -0.1875 = 0.514123445 Simplifying x + -0.1875 = 0.514123445 Reorder the terms: -0.1875 + x = 0.514123445 Solving -0.1875 + x = 0.514123445 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '0.1875' to each side of the equation. -0.1875 + 0.1875 + x = 0.514123445 + 0.1875 Combine like terms: -0.1875 + 0.1875 = 0.0000 0.0000 + x = 0.514123445 + 0.1875 x = 0.514123445 + 0.1875 Combine like terms: 0.514123445 + 0.1875 = 0.701623445 x = 0.701623445 Simplifying x = 0.701623445

Subproblem 2

x + -0.1875 = -0.514123445 Simplifying x + -0.1875 = -0.514123445 Reorder the terms: -0.1875 + x = -0.514123445 Solving -0.1875 + x = -0.514123445 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '0.1875' to each side of the equation. -0.1875 + 0.1875 + x = -0.514123445 + 0.1875 Combine like terms: -0.1875 + 0.1875 = 0.0000 0.0000 + x = -0.514123445 + 0.1875 x = -0.514123445 + 0.1875 Combine like terms: -0.514123445 + 0.1875 = -0.326623445 x = -0.326623445 Simplifying x = -0.326623445

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.701623445, -0.326623445}

See similar equations:

| 5/6y+5/6=-1/6y+2/3 | | x^2ln(x-9)ln(x)=0 | | .18y+.06(y+7000)=1140 | | 7x-x=-2+2x-2-4 | | 26+90x=2(52+180x) | | 2/3h-9=6-2/3G | | 2(3x-3)-8=-4 | | 17+4.5g=-25 | | 2.6=-0.2 | | lny=6x+7 | | b+7=30 | | Y-8=-40 | | 2/3x-1=1/x | | 3/5x+1/8=-2/5x+1/4 | | 4x+2=2x-2 | | Y+96=X | | 6m-12=2m+36 | | 6z-11=-2z+5 | | 5x+2x-3=-3+10 | | 2y-70=15x | | (2)x^2+.6x-0.09=0 | | -2m+2=-18 | | 8a+6(4a-1)= | | F-p=pt | | 2x^4(3-x)=-(3x+13) | | 3(2d+8)=42 | | -2a=-3 | | 2x-3+7= | | 4+H+6+8= | | 5x+6-2x=8+3x | | 5?4?5?4?5= | | -19x-1=12x+34 |

Equations solver categories