If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(6x)(x+33)=180
We move all terms to the left:
(6x)(x+33)-(180)=0
We multiply parentheses
6x^2+198x-180=0
a = 6; b = 198; c = -180;
Δ = b2-4ac
Δ = 1982-4·6·(-180)
Δ = 43524
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{43524}=\sqrt{36*1209}=\sqrt{36}*\sqrt{1209}=6\sqrt{1209}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(198)-6\sqrt{1209}}{2*6}=\frac{-198-6\sqrt{1209}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(198)+6\sqrt{1209}}{2*6}=\frac{-198+6\sqrt{1209}}{12} $
| -78+2a=0 | | m−8=16 | | 35n=1015 | | x²-x=4x | | k+29=44 | | 3=30-x/17 | | p+3.25=7.78 | | 7+8×-4=2×+10+3x | | 44m=-1012 | | x+50=34 | | -12+x11=-3 | | -2(3x+3)+2=58 | | p+38=28 | | .02x^2-1x+0=0 | | -8-2a=-(8+4a) | | R=400+25x-x^2,C=50+50x | | s-40=10 | | (m+3)/(2m-1)=4 | | h+38=62 | | 2x/4+4=12 | | 2=f+2.53 | | -5(k+50)=90 | | 20-8b=-4(3b-8) | | 4x+1+90+x-2=180 | | p-47=-82 | | -78+2a=-4a-12 | | h+38=63 | | 10x²-30x-8=0 | | -39x=741 | | 2x/4+4=124 | | -26+n=5(n-3)-3 | | x/36=-14 |