(6x)2+(7x+11)2=360

Simple and best practice solution for (6x)2+(7x+11)2=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6x)2+(7x+11)2=360 equation:



(6x)2+(7x+11)2=360
We move all terms to the left:
(6x)2+(7x+11)2-(360)=0
We add all the numbers together, and all the variables
6x^2+(7x+11)2-360=0
We multiply parentheses
6x^2+14x+22-360=0
We add all the numbers together, and all the variables
6x^2+14x-338=0
a = 6; b = 14; c = -338;
Δ = b2-4ac
Δ = 142-4·6·(-338)
Δ = 8308
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8308}=\sqrt{4*2077}=\sqrt{4}*\sqrt{2077}=2\sqrt{2077}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{2077}}{2*6}=\frac{-14-2\sqrt{2077}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{2077}}{2*6}=\frac{-14+2\sqrt{2077}}{12} $

See similar equations:

| 36+18x=18x | | 2x-11+x-4=-3 | | 72+4x+9x=36x | | 5x-2/3x+4=1 | | 5x+5x^2=550 | | 3y+3y=9 | | Y(y-295)=8000 | | 2x^{2}-15x-4500=0 | | 20=a-308 | | x36=9x | | 7p—8=-22 | | x(9x4)=9x4 | | 33x=11x | | p^2+6p+11=10 | | 3^(5x-1)=12 | | a. 6a-11=7 | | 7a+3(240-a)=1360 | | 4^x=7^3x-5 | | n^2-20n+16=-3 | | 7a+(1360-7a)=1360 | | 10b–3=27 | | –9x+2=11 | | 63÷f=7 | | 5h+9+3=37 | | 2+g-(-3)=-5 | | 3x-10=0. | | 3w+29=-5(w-1) | | (x+4)(xˆ2+4x+16)=xˆ3+64 | | 7u-5+2(4u+5)=-3(u+3) | | Y=x⁵+10x³-9x | | (D2+4D+5)*y=0 | | 2/3(3n-30)=3/4(4n-7) |

Equations solver categories