(6x)=16-12/2(6x)+3

Simple and best practice solution for (6x)=16-12/2(6x)+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6x)=16-12/2(6x)+3 equation:



(6x)=16-12/2(6x)+3
We move all terms to the left:
(6x)-(16-12/2(6x)+3)=0
Domain of the equation: 26x+3)!=0
x∈R
We add all the numbers together, and all the variables
6x-(-12/26x+19)=0
We get rid of parentheses
6x+12/26x-19=0
We multiply all the terms by the denominator
6x*26x-19*26x+12=0
Wy multiply elements
156x^2-494x+12=0
a = 156; b = -494; c = +12;
Δ = b2-4ac
Δ = -4942-4·156·12
Δ = 236548
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{236548}=\sqrt{4*59137}=\sqrt{4}*\sqrt{59137}=2\sqrt{59137}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-494)-2\sqrt{59137}}{2*156}=\frac{494-2\sqrt{59137}}{312} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-494)+2\sqrt{59137}}{2*156}=\frac{494+2\sqrt{59137}}{312} $

See similar equations:

| 2/3n-12=16 | | $3-y=$1.75 | | 42+(4x-10)=180 | | 26-4n=3(1-3)-7 | | H/2h+4-1/h+2=1 | | .-x+5=10 | | 4x-9=9x-3 | | 4x-2/2=3x+6/3 | | $3-b=$1.75 | | 12n^2=-9n+10 | | 18x-3x+4=49 | | -g+2(3+g=-4g+1) | | 15b−13b=4 | | 15-2(8k-4)=55 | | 19q-13q=18 | | 20+3=1/2(6+4a) | | q=(-10=2.5 | | 3(x+8)+x=4(x-9) | | 3/4(x-16)=1/2(x+1) | | 8a-(5a+1)=8-(2a+6) | | 2(7x-5)=-7x+10 | | .7+y=-1 | | 5/4-2/3x=2 | | P=s1+s2+s3;s3 | | 2x-4x=-7x=10 | | X+3×=x+x+10 | | A(0)=-2w^2+300w | | -32-32n=8n+48 | | 3.9=6.7-0.7x | | X-10=3x+12 | | -4(8+7x)=5(7x-4) | | y^2+2y+3=180 |

Equations solver categories