If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(6x+1)(4x)=0
We multiply parentheses
24x^2+4x=0
a = 24; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·24·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*24}=\frac{-8}{48} =-1/6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*24}=\frac{0}{48} =0 $
| 6.3(5.1h÷4.2+2.7)=38.43 | | -x/2+3=8 | | 3x*2-2x+2=0 | | 12w-6w=48 | | x/4+22=-19 | | Y+3x=11;x=-1,0,4 | | t-(5t-3)=23 | | 13x=-16 | | 119=(65)t | | 49y−12=41y−4 | | x/4-x/12=x/2+1/2 | | 7-x+4x-2-9=0 | | 26−4s=9s | | 6x(5x-1)=2 | | 9=y^2 | | x^2+3x=-3.5 | | 4*x*x=36 | | (2/7)(5x-2)=8 | | 2/7)*(5x-2)=8 | | 5(x-2)=3x-8x+7 | | x2=-216 | | h+65=2h+65=2 | | (4t²+3t+1)/(t³+t²+t+1)=0 | | X^2+12x+12=-8 | | X+6y=76 | | x−9=1 | | 19=-23-7x | | 15,3+1h=1,3−1h | | 0.25r-0.25+0.25r=0.25-0.25r | | F(n)=(n-1)+2 | | 7x+6@x=11 | | 3=4t/5 |