(6x+1)x=(3x-2)(6x+1)

Simple and best practice solution for (6x+1)x=(3x-2)(6x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6x+1)x=(3x-2)(6x+1) equation:



(6x+1)x=(3x-2)(6x+1)
We move all terms to the left:
(6x+1)x-((3x-2)(6x+1))=0
We multiply parentheses
6x^2+x-((3x-2)(6x+1))=0
We multiply parentheses ..
6x^2-((+18x^2+3x-12x-2))+x=0
We calculate terms in parentheses: -((+18x^2+3x-12x-2)), so:
(+18x^2+3x-12x-2)
We get rid of parentheses
18x^2+3x-12x-2
We add all the numbers together, and all the variables
18x^2-9x-2
Back to the equation:
-(18x^2-9x-2)
We add all the numbers together, and all the variables
6x^2+x-(18x^2-9x-2)=0
We get rid of parentheses
6x^2-18x^2+x+9x+2=0
We add all the numbers together, and all the variables
-12x^2+10x+2=0
a = -12; b = 10; c = +2;
Δ = b2-4ac
Δ = 102-4·(-12)·2
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{196}=14$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-14}{2*-12}=\frac{-24}{-24} =1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+14}{2*-12}=\frac{4}{-24} =-1/6 $

See similar equations:

| -6x+20=16 | | 5^k=9,765,625 | | 2p+8=38 | | 4x+55=103 | | 6x+43=109 | | 6y-17=27 | | x=6x-19 | | 11x2-240x-44=0 | | x+3(×-2)=3 | | x+3×(x-2)=3 | | 2x+8/12=2 | | 180-4x=180-3x | | 14x^2=29x-12 | | -(11x-13)+45-x=3•(6-9x)+17x+10 | | 14^2=29x-12 | | 2x+20/4=10 | | 2x-7=9×+4 | | 5x+30=5-2x | | 1/2(x)+1=100 | | −30−x=−4 | | 1/4x=1/7x+33 | | 7x+10+3x-6=33 | | 3−z2=6 | | 8*(2x-1)-3*(2x-1)=x+4 | | X3+2x=25 | | 4-3x=5x-2*(3-x) | | x+28=85 | | x=28=85 | | x-3(1+x)=5x | | 5+x+4x-(100)=0 | | 5+x+4x=100 | | 3x+99+72=180 |

Equations solver categories