(6x+12)(x-3)-(x+2)(2x+3)=0

Simple and best practice solution for (6x+12)(x-3)-(x+2)(2x+3)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6x+12)(x-3)-(x+2)(2x+3)=0 equation:



(6x+12)(x-3)-(x+2)(2x+3)=0
We multiply parentheses ..
(+6x^2-18x+12x-36)-(x+2)(2x+3)=0
We get rid of parentheses
6x^2-18x+12x-(x+2)(2x+3)-36=0
We multiply parentheses ..
6x^2-(+2x^2+3x+4x+6)-18x+12x-36=0
We add all the numbers together, and all the variables
6x^2-(+2x^2+3x+4x+6)-6x-36=0
We get rid of parentheses
6x^2-2x^2-3x-4x-6x-6-36=0
We add all the numbers together, and all the variables
4x^2-13x-42=0
a = 4; b = -13; c = -42;
Δ = b2-4ac
Δ = -132-4·4·(-42)
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{841}=29$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-29}{2*4}=\frac{-16}{8} =-2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+29}{2*4}=\frac{42}{8} =5+1/4 $

See similar equations:

| x2+4x=75 | | 16=3r+7 | | 3m=1÷9 | | 2(6j-12)=6(j+4) | | 17x-41=3x+15 | | 5(4x5)=55 | | 30-1/3p=p+14 | | 20-2p=6p-12 | | 12=8+2(y-4) | | .x–56,409=240,021 | | X+32=4-3x | | 2p-4=2-3p | | -x2-5x+60=0 | | 3x2+8x=1 | | -54=7(x-3) | | 230.4=6k | | 230.4=k6 | | 3(3x+5)=2(2x+5) | | 3x+8=4x=-8(x-6)-8(13x+5) | | 3x+8=4x=-8(6- | | x+16=×+24+78 | | 9(x-9)-3=(-4(2x+4) | | x+16-x+24=78 | | 2n-4n=66 | | x+16+x+24=78 | | -12+2x+2x-15=x | | 12+10+3=x | | 29x=700 | | 6-9x=6x—9x+24 | | 19x=705 | | 19x=700 | | 2(x-)=x+2 |

Equations solver categories