(6x+3.91)(2.75x+1.7)=

Simple and best practice solution for (6x+3.91)(2.75x+1.7)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6x+3.91)(2.75x+1.7)= equation:


Simplifying
(6x + 3.91)(2.75x + 1.7) = 0

Reorder the terms:
(3.91 + 6x)(2.75x + 1.7) = 0

Reorder the terms:
(3.91 + 6x)(1.7 + 2.75x) = 0

Multiply (3.91 + 6x) * (1.7 + 2.75x)
(3.91(1.7 + 2.75x) + 6x * (1.7 + 2.75x)) = 0
((1.7 * 3.91 + 2.75x * 3.91) + 6x * (1.7 + 2.75x)) = 0
((6.647 + 10.7525x) + 6x * (1.7 + 2.75x)) = 0
(6.647 + 10.7525x + (1.7 * 6x + 2.75x * 6x)) = 0
(6.647 + 10.7525x + (10.2x + 16.5x2)) = 0

Combine like terms: 10.7525x + 10.2x = 20.9525x
(6.647 + 20.9525x + 16.5x2) = 0

Solving
6.647 + 20.9525x + 16.5x2 = 0

Solving for variable 'x'.

Begin completing the square.  Divide all terms by
16.5 the coefficient of the squared term: 

Divide each side by '16.5'.
0.4028484848 + 1.269848485x + x2 = 0

Move the constant term to the right:

Add '-0.4028484848' to each side of the equation.
0.4028484848 + 1.269848485x + -0.4028484848 + x2 = 0 + -0.4028484848

Reorder the terms:
0.4028484848 + -0.4028484848 + 1.269848485x + x2 = 0 + -0.4028484848

Combine like terms: 0.4028484848 + -0.4028484848 = 0.0000000000
0.0000000000 + 1.269848485x + x2 = 0 + -0.4028484848
1.269848485x + x2 = 0 + -0.4028484848

Combine like terms: 0 + -0.4028484848 = -0.4028484848
1.269848485x + x2 = -0.4028484848

The x term is 1.269848485x.  Take half its coefficient (0.6349242425).
Square it (0.4031287937) and add it to both sides.

Add '0.4031287937' to each side of the equation.
1.269848485x + 0.4031287937 + x2 = -0.4028484848 + 0.4031287937

Reorder the terms:
0.4031287937 + 1.269848485x + x2 = -0.4028484848 + 0.4031287937

Combine like terms: -0.4028484848 + 0.4031287937 = 0.0002803089
0.4031287937 + 1.269848485x + x2 = 0.0002803089

Factor a perfect square on the left side:
(x + 0.6349242425)(x + 0.6349242425) = 0.0002803089

Calculate the square root of the right side: 0.016742428

Break this problem into two subproblems by setting 
(x + 0.6349242425) equal to 0.016742428 and -0.016742428.

Subproblem 1

x + 0.6349242425 = 0.016742428 Simplifying x + 0.6349242425 = 0.016742428 Reorder the terms: 0.6349242425 + x = 0.016742428 Solving 0.6349242425 + x = 0.016742428 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.6349242425' to each side of the equation. 0.6349242425 + -0.6349242425 + x = 0.016742428 + -0.6349242425 Combine like terms: 0.6349242425 + -0.6349242425 = 0.0000000000 0.0000000000 + x = 0.016742428 + -0.6349242425 x = 0.016742428 + -0.6349242425 Combine like terms: 0.016742428 + -0.6349242425 = -0.6181818145 x = -0.6181818145 Simplifying x = -0.6181818145

Subproblem 2

x + 0.6349242425 = -0.016742428 Simplifying x + 0.6349242425 = -0.016742428 Reorder the terms: 0.6349242425 + x = -0.016742428 Solving 0.6349242425 + x = -0.016742428 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.6349242425' to each side of the equation. 0.6349242425 + -0.6349242425 + x = -0.016742428 + -0.6349242425 Combine like terms: 0.6349242425 + -0.6349242425 = 0.0000000000 0.0000000000 + x = -0.016742428 + -0.6349242425 x = -0.016742428 + -0.6349242425 Combine like terms: -0.016742428 + -0.6349242425 = -0.6516666705 x = -0.6516666705 Simplifying x = -0.6516666705

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-0.6181818145, -0.6516666705}

See similar equations:

| 7x+14=98 | | 23+4x=-19-3x | | 9+4(-6x-4)=7 | | (x-3)/9=45 | | (11/12)x-(1/4)=8 | | (2.75x+1.7)(0.63+0.012)= | | 5x=2-3x^2 | | x^2+8x=6x | | 8x-9-6x=-2 | | 2(3-4x)+9x-6= | | Px1/4=p4 | | (c+1)4=(2c-5)3 | | 5n+2=3n+12 | | 8t-9=6t+3 | | (4x^2-13x-12)= | | (5x-6)-3x=12 | | 2.75x+1.7*0.63+0.012= | | 4.2x-17.58=5.1 | | x+1.75=sqrt(x^2+9) | | 3x-x+1=1 | | 8(x-3)+7=2x+6(-2+x) | | -10(x+4)+52= | | 36-18=3(x-9) | | 2y+2y-3+3y-7=46 | | N/6-3=4 | | 8-(8w/5 | | (3x^2-x)(x^2-4)(2x-1)=0 | | 3n+5=1n+19 | | 272x+3=93 | | (c+1)4=(2*-5)3 | | 8x^3-2y=0 | | -3x^2m(x)=-6x^4 |

Equations solver categories