(6x+5)(6x+5)(3x+2)(x+1)=35

Simple and best practice solution for (6x+5)(6x+5)(3x+2)(x+1)=35 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6x+5)(6x+5)(3x+2)(x+1)=35 equation:


Simplifying
(6x + 5)(6x + 5)(3x + 2)(x + 1) = 35

Reorder the terms:
(5 + 6x)(6x + 5)(3x + 2)(x + 1) = 35

Reorder the terms:
(5 + 6x)(5 + 6x)(3x + 2)(x + 1) = 35

Reorder the terms:
(5 + 6x)(5 + 6x)(2 + 3x)(x + 1) = 35

Reorder the terms:
(5 + 6x)(5 + 6x)(2 + 3x)(1 + x) = 35

Multiply (5 + 6x) * (5 + 6x)
(5(5 + 6x) + 6x * (5 + 6x))(2 + 3x)(1 + x) = 35
((5 * 5 + 6x * 5) + 6x * (5 + 6x))(2 + 3x)(1 + x) = 35
((25 + 30x) + 6x * (5 + 6x))(2 + 3x)(1 + x) = 35
(25 + 30x + (5 * 6x + 6x * 6x))(2 + 3x)(1 + x) = 35
(25 + 30x + (30x + 36x2))(2 + 3x)(1 + x) = 35

Combine like terms: 30x + 30x = 60x
(25 + 60x + 36x2)(2 + 3x)(1 + x) = 35

Multiply (25 + 60x + 36x2) * (2 + 3x)
(25(2 + 3x) + 60x * (2 + 3x) + 36x2 * (2 + 3x))(1 + x) = 35
((2 * 25 + 3x * 25) + 60x * (2 + 3x) + 36x2 * (2 + 3x))(1 + x) = 35
((50 + 75x) + 60x * (2 + 3x) + 36x2 * (2 + 3x))(1 + x) = 35
(50 + 75x + (2 * 60x + 3x * 60x) + 36x2 * (2 + 3x))(1 + x) = 35
(50 + 75x + (120x + 180x2) + 36x2 * (2 + 3x))(1 + x) = 35
(50 + 75x + 120x + 180x2 + (2 * 36x2 + 3x * 36x2))(1 + x) = 35
(50 + 75x + 120x + 180x2 + (72x2 + 108x3))(1 + x) = 35

Combine like terms: 75x + 120x = 195x
(50 + 195x + 180x2 + 72x2 + 108x3)(1 + x) = 35

Combine like terms: 180x2 + 72x2 = 252x2
(50 + 195x + 252x2 + 108x3)(1 + x) = 35

Multiply (50 + 195x + 252x2 + 108x3) * (1 + x)
(50(1 + x) + 195x * (1 + x) + 252x2 * (1 + x) + 108x3 * (1 + x)) = 35
((1 * 50 + x * 50) + 195x * (1 + x) + 252x2 * (1 + x) + 108x3 * (1 + x)) = 35
((50 + 50x) + 195x * (1 + x) + 252x2 * (1 + x) + 108x3 * (1 + x)) = 35
(50 + 50x + (1 * 195x + x * 195x) + 252x2 * (1 + x) + 108x3 * (1 + x)) = 35
(50 + 50x + (195x + 195x2) + 252x2 * (1 + x) + 108x3 * (1 + x)) = 35
(50 + 50x + 195x + 195x2 + (1 * 252x2 + x * 252x2) + 108x3 * (1 + x)) = 35
(50 + 50x + 195x + 195x2 + (252x2 + 252x3) + 108x3 * (1 + x)) = 35
(50 + 50x + 195x + 195x2 + 252x2 + 252x3 + (1 * 108x3 + x * 108x3)) = 35
(50 + 50x + 195x + 195x2 + 252x2 + 252x3 + (108x3 + 108x4)) = 35

Combine like terms: 50x + 195x = 245x
(50 + 245x + 195x2 + 252x2 + 252x3 + 108x3 + 108x4) = 35

Combine like terms: 195x2 + 252x2 = 447x2
(50 + 245x + 447x2 + 252x3 + 108x3 + 108x4) = 35

Combine like terms: 252x3 + 108x3 = 360x3
(50 + 245x + 447x2 + 360x3 + 108x4) = 35

Solving
50 + 245x + 447x2 + 360x3 + 108x4 = 35

Solving for variable 'x'.

Reorder the terms:
50 + -35 + 245x + 447x2 + 360x3 + 108x4 = 35 + -35

Combine like terms: 50 + -35 = 15
15 + 245x + 447x2 + 360x3 + 108x4 = 35 + -35

Combine like terms: 35 + -35 = 0
15 + 245x + 447x2 + 360x3 + 108x4 = 0

The solution to this equation could not be determined.

See similar equations:

| 4x-6x-3x= | | 5cosx-6=0 | | [3x^2-2/x^2] | | (200-4x)/3x | | k=2-3k | | 3(x)=2(x+7) | | x^2+y^2+4x+6y+13=0 | | 2(m-2)=3(m+4) | | 5(5+3x)=7(7+2x) | | 3x-11=x-2/3 | | 2p+2= | | 2cos1/2x=0 | | 1/3[2y-1]=3 | | 2log(3z-1)=1 | | y=3(-14)+5 | | 40=(7x-4)(3x) | | 4x+5(2-x)=3x-2 | | x-y+z-(x^2+x-y)= | | 9-252= | | X-4=1/2 | | 6x-9y-6x= | | x(i-1)+y(2i)+4=0 | | xi-x+2iy+4=0 | | 3n+5h=13.65 | | 3y+9x-46=0 | | 5x-14=42-2x | | p^2-20p+16=0 | | 4s^5=11 | | x^2+y^2-8x+10y+40=0 | | 15a^2+4a-4=0 | | x^2+y^8x+10y+40=0 | | (x-iy)(x-iy)=2i |

Equations solver categories